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INTRODUCTION 

 
The objective of this postdoctoral training research is an integration of 

Geographic Information Systems (GIS) and a spatio-temporal perspective into breast 
cancer research of the relationship between environmental exposures and breast cancer 
risk. With the increased use of GIS in epidemiologic studies, it becomes possible to 
examine lifetime exposures to environmental risk factors by integrating lifetime exposure 
information in GIS with other breast cancer epidemiologic factors. As a part of the 
ongoing case-control study of breast cancer in western New York, the proposed study 
examines the relationships between the residential environment and breast cancer risk 
and test the hypothesis, 1) Lifetime cumulative exposure to Polycyclic Aromatic 
Hydrocarbons (PAHs) and benzene will be more strongly associated with risk for breast 
cancer than of any one time period. 2) There will be sensitive periods in a woman’s life 
that will carry greater risk for exposure. Specific aims of the proposed study include, 1) 
Continuing evaluation on the role of environmental risk factors on breast cancer; we will 
develop a GIS-based model of lifetime residential history and environmental exposure in 
breast cancer. 2) Assessment of historical exposures to PAHs and benzene and breast 
cancer risk; we will reconstruct historical exposure to PAH and benzene for the use in 
environmental epidemiology of breast cancer and empirically assess exposure to these 
two environmental compounds based on lifetime exposure index. Using lifetime 
residential information for breast cancer cases and controls in western New York, the 
proposed study examines breast cancer risk from lifetime exposures. Lifetime residential 
histories have been collected for the breast cancer cases and controls by interview, while 
information on environmental contaminants is being collected from historical sources. 
We use GIS in our assessment of the associations of environmental risk factors and 
breast cancer incidence. Further spatial-statistical analyses are performed in a GIS 
environment to examine associations between residential environment and breast cancer 
risk in spatial and temporal dimensions. Preliminary findings are discussed in the text of 
this report, and these findings indicate that environmental exposures in early life 
may be associated with breast cancer risk. 
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BODY OF REPORT 

 
Task 1: Developing plan for modeling, data needs, and training.  

As proposed, developing a plan for modeling and development of the data were a 
major component of the first year goals. For this goal, I have been focusing on 
completion of spatial clustering analyses of residences. I completed a GIS-based spatial 
and temporal analysis for residences of breast cancer cases and controls at early life and 
found strong evidence of spatial clustering for cases during this time. A paper on 
geographic clustering of residence in early life and subsequent risk of breast cancer has 
been published (Han, D. Rogerson, PA. Nie, J. Bonner, MR. Vena, JE. Muti, P. Trevisan, 
M. Edge, S. Freudenheim, JL. 2004. Geographic Clustering of Residence in Early Life 
and Subsequent Risk of Breast Cancer. Cancer Causes and Controls 2004;15: 921-929). 
My paper based on this work was selected as one of ten finalists for the Nystrom 
competition of the Association of American Geographers (AAG), and the paper was 
presented at the centennial meeting of the AAG, Philadelphia, PA. A copy of the 
manuscript is included in Appendix. 

We also completed updating of the lifetime residential histories for our dataset for 
the breast cancer cases and controls. All Erie and Niagara county residential location 
were identified and geocoded, and these were merged into one database. We checked 
consistency of geocoded addresses in different time points for each individual, updated 
incomplete addresses using Polk searches, and validated the consistency of reported years 
of moved in and out of the residence. A paper regarding the clustering of lifetime 
residence and breast cancer risk using exploratory spatial analysis tools based on these 
lifetime residential history data has been accepted for publication (Han, D. Rogerson, PA. 
Bonner, MR. Nie, J.Vena, JE. Muti, P. Trevisan, M. Freudenheim, JL. 2005. Assessing 
Spatio-Temporal Variability of Risk Surfaces using Residential History Data in a Case 
Control Study of Breast Cancer. International Journal of Health Geographics 4:9), and an 
abstract based on this work was presented at the annual meeting of the International 
Society for Environmental Epidemiology in New York City, New York, August, 2004. A 
copy of the abstract is in Reportable Outcome Section, and a copy of the manuscript is 
included in the Appendix. 

Second, we completed collection of the PAHs and benzene exposure from historic 
traffic information and air pollution sources. Working with my colleagues Drs. Jing Nie 
and Matthew Bonner and others, we have assessed historical exposure to PAH from these 
sources, and found evidence of association between PAHs exposures from traffic and air 
pollution sources in relation to breast cancer risk, especially PAH exposures during 
sensitive time periods in early life. Also a GIS-based traffic model was established to 
estimate historical residential exposure to PAHs from traffic, and a geostatistical method 
was utilized to predict and interpolate individual residential TSP concentration for the 
estimation of PAHs exposure from air pollution source. These data and evidence from 
epidemiologic studies will be used in my future spatial analyses of lifetime exposure to 
PAHs and breast cancer risk. I was a contributor to a paper regarding historical exposure 
to PAHs as measured by total suspended particulates and by traffic PAHs. 

Training in epidemiology was another major task. I have been involved in 
analysis and writing of a classic epidemiologic research paper and have participated in 
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several workshops on epidemiologic methods. As a part of my training, I took an 
epidemiologic methods course “Advanced epidemiologic methods” in the Department of 
Social and Preventive Medicine in the University at Buffalo. I have also participated in 
the National Cancer Institute’s summer curriculum in cancer prevention program, and 
took the course “Principles and practice of cancer prevention and control.” I also took a 
cancer oncology course, “Oncology for scientists (RPN530)” at the Roswell Park Cancer 
Institute, Buffalo, NY in the fall of 2004. In addition, I participated in the Center for 
Spatially Integrated Social Science (CSISS) summer workshop, “Geographically 
weighted regression and associated statistics”, and I was selected as one of the 
participants in the Harvard School of Public Health workshop, “The Public Health 
Disparities Geocoding Project” which I attended in June 2005. 

Finally, in order to increase my skills in epidemiologic analysis, I have been 
working on a more classic exposure-disease analysis of lifetime body weight and breast 
cancer risk. The paper is however a departure from a completely classical analysis in that 
I am looking at early exposures and modeling cumulative exposures as well as exposures 
in potentially sensitive time periods; this work then is also consistent with the GIS-based 
work that I have been doing on early exposures and breast cancer risk. I have been using 
the same breast cancer study as for my GIS research, a case-control study in western New 
York, the Western New York Exposures and Breast Cancer (WEB) study. An abstract 
based on this work was presented at the annual meeting of the Society for Epidemiologic 
Research in Salt Lake City, June 2004. A manuscript has been submitted regarding 
effects of lifetime adult weight change on pre- and post-menopausal breast cancer risk 
using breast cancer case-control data in western New York. I have attached a copy of the 
manuscript submitted in the appendix. (Han, D. Nie, J. Bonner, MR. McCann, SE. Muti, 
P. Trevisan, M. Ramirez, F. Vito, D. Freudenheim, JL. Lifetime Adult Weight Gain, 
Central Adiposity, and the Risk of Pre- and Postmenopausal Breast Cancer in the 
Western New York Exposure and Breast Cancer (WEB) Study. Submitted). 

 
 
Task 2: Developing and testing a model for lifetime exposure and breast cancer risk 

The development of a theoretical framework measuring similarity and difference 
of individual’s lifetime residential history is completed. Investigators in the Department 
of Geography and NCGIA have developed GIS-based theoretical frameworks measuring 
similarity or dissimilarity of individual’s lifetime residential history in space and time 
(Sinha, G. and Mark, D. Measuring similarity between geospatial lifelines in 
studies of environmental health. Journal of Geographical Systems 2005 7:115-136). I 
have applied these models of geospatial lifeline to breast cancer case and control data in 
Western New York, and I have been focusing on the development of algorithms for 
missing residential history (about 7%). Further, we have considered three additional 
factors in developing a model for lifetime exposure and breast cancer risk. First, accuracy 
of historic residential information was validated. As part of this work, we have obtained 
birth certificates for study participants including birth address information, and have 
validated the accuracy of reported birth addresses relative to the birth certificates. Second, 
interactions of socio-economic factors with environmental exposures and subsequent risk 
of breast cancer were evaluated. Toward this goal, I participated in the Harvard School of 
Public Health geocoding workshop. I have explored the possibility of getting historic 
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socio-economic variables, such as area-based measures of income or education, from 
available historic census data. Socio-economic factors may be directly related to 
differential environmental exposures, and geographic clustering of lifetime residence may 
occur because of such socio-economic factors. Thus, we developed a model of lifetime 
exposure and breast cancer risk after adjusting for socio-economic variables. Lastly, 
variations due to genetic or biological difference were included in the model. For this 
goal, we have examined clustering of early life residence and breast cancer risk by 
genetic and biological characteristics. We found evidence of clustering among cases with 
a GSTM1 null genotype, and observed a tendency to clustering among those with 
estrogen receptor positive (ER+) tumors relative to controls. These findings indicate that 
there are effects of common exogenous exposures related to residence in early life, 
especially among subgroups of cases, and that this genetic susceptibility to environmental 
exposure may play a role in subsequent risk of ER+ breast cancer. A copy of the abstract 
is in Reportable Outcome Section. 

 
 
Task 3: Assessing historical exposures to PAHs and benzene and breast cancer risk.    

We have collected and analyzed the PAHs and benzene exposure information 
from lifetime smoking histories (active and passive smoking histories), traffic roadways, 
air pollution sources (total suspended particulates), and industrial sites. Also a GIS-based 
traffic model was established to estimate historical residential exposure to PAHs from 
traffic, and a geostatistical method was utilized to predict and interpolate individual 
residential TSP concentration for the estimation of PAHs exposure from air pollution 
source. As described earlier, we have assessed historical exposure to PAH from these 
sources, and found evidence of association between PAHs exposures in relation to breast 
cancer risk, especially PAH exposures during sensitive time periods in early life. 
Working with my colleague Dr. Matthew Bonner, Jing Nie, and others, two publications 
were produced; 1) Bonner, MR. Nie, J. Han, D. et al. Environmental tobacco smoke 
exposure in early life and the risk of breast cancer. Cancer Causes and Control 2005 
16:683-689). 2) Bonner, MR. Han, D. Nie, J. et al. Breast cancer risk and exposure in 
early life to polycyclic aromatic hydrocarbons using total suspended particulates as a 
proxy measure. Cancer Epidemiology, Biomarkers and Prevention 2005 14:53-60. We 
also found evidence of association between traffic PAHs exposures in early life and 
breast cancer risk, and two abstracts were published; 1) Nie, J. Bonner, MR. Han, D. et al. 
“Environmental exposure to traffic polycyclic aromatic hydrocarbons (PAHs) and risk of 
breast cancer” Proc. Amer Assoc Cancer Res 2005 46: 4916. 2) Nie, J. Bonner, MR. Han, 
D. et al. “Traffic Polycyclic Aromatic Hydrocarbons Genetic Susceptibility and Risk of 
Breast Cancer” Pediatric Research 2005 58: 1025. A manuscript is being prepared for 
publication regarding those results. Further collaborations assessing the genetic 
susceptibility to PAHs from traffic source and from air pollution (TSP) have been 
conducted and some associations have been observed. These data and epidemiologic 
evidence were used for further analyses, based on the models of geospatial lifeline for the 
estimation of lifetime residential exposures to PAHs and breast cancer risk. 
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KEY RESEARCH ACCOMPLISHMENTS 
 

• A paper on geographic clustering of residence in early life and subsequent risk of 
breast cancer was published. (Han, D. Rogerson, PA. Nie, J. Bonner, MR. Vena, 
JE. Muti, P. Trevisan, M. Edge, S. Freudenheim, JL. Geographic Clustering of 
Residence in Early Life and Subsequent Risk of Breast Cancer. Cancer Causes 
and Controls 2004 15:921-929) 

 
• A manuscript was published regarding the clustering of lifetime residence and 

breast cancer risk using exploratory spatial analysis tools based on these lifetime 
residential history data (Han, D. Rogerson, PA. Bonner, MR. Nie, J.Vena, JE. 
Muti, P. Trevisan, M. Freudenheim, JL. Assessing Spatio-Temporal Variability of 
Risk Surfaces using Residential History Data in a Case Control Study of Breast 
Cancer. International Journal of Health Geographics 2005 4:9) 

 
• We completed updating of lifetime residential history of breast cancer cases and 

controls in western New York; All Erie and Niagara county residential location 
were identified and geocoded, and these were merged into one database. We 
checked consistency of geocoded addresses in different time points for each 
individual,  updated incomplete addresses using Polk index searches, and 
validated the consistency of reported years of moved in and out of the residence. 

 
• We completed collection of PAH exposure data from historic traffic information 

and air pollution sources. A GIS-based traffic model was established to estimate 
historical residential exposure to PAHs from traffic. An abstract was presented by 
a colleague. 

 
• A manuscript has been submitted regarding effects of lifetime adult weight 

change on pre- and post-menopausal breast cancer risk using breast cancer case-
control data in western New York. An abstract based on this work was presented 
at the annual meeting of the Society for Epidemiologic Research in Salt Lake City, 
June 2004. (American Journal of Epidemiology Supplement 159: S13) 

 
• I have examined clustering of early life residence and breast cancer risk by 

genetic and biological characteristics, and a poster was presented at the annual 
meeting of the American Association for Cancer Research in Anaheim , CA, 
April 2005. (Proc. Amer Assoc Cancer Res 46: 3214) 

 
• I gave an oral presentation for the paper entitled “Clustering of cases by early life 

residence: evidence for early life environmental exposures in the etiology of 
breast cancer?” at the Fourth Era of Hope Meeting for the Department of Defense 
Breast Cancer Research Program in Philadelphia, PA. June 2005. 
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• I gave an oral presentation for the paper entitled “Assessing the variability of risk 
surfaces using residential history data in a case control study of breast cancer” at 
the annual meeting of the International Society for Environmental Epidemiology 
in New York City, New York, August, 2004. (Epidemiology Supplement 15: 
S529) 

 
• My paper was selected as one of ten finalists for the Nystrom competition of the 

Association of American Geographers (AAG), and the paper was presented at the 
centennial meeting of the AAG, Philadelphia, PA. March, 2004. 

 
• I gave a special guest lecture on “GIS Applications in Environmental 

Epidemiologic Studies” for a course in the Department of Social and Preventive 
Medicine, Environmental Epidemiology (SPM551), University at Buffalo-SUNY. 
April 2005. 

 
• I presented a seminar “Geographical Epidemiology of Breast Cancer in Western 

New York” as part of the seminar series of the Department of Social and 
Preventive Medicine, University at Buffalo-SUNY. March, 2004 

 
• I gave an invited talk on “GIS, Medical geography, and Spatial Epidemiology” in 

Kyung Hee University, Seoul, Korea. June, 2004. 
 

• As a part of my training, I took an epidemiologic method course, “SPM 502: 
Advanced epidemiologic methods” in the Department of Social and Preventive 
Medicine, University at Buffalo. Spring, 2004, 3 credit hours, and also took a 
cancer oncology course, “RPN 530: Oncology for scientists” at the Roswell Park 
Cancer Institute. Fall, 2004, 3 credit hours. 

 
• I participated in a Harvard School of Public Health workshop “The Public Health 

Disparities Geocoding Project” in June 2005. 
 

• I participated in the NCI Summer Curriculum in Cancer Prevention, and took the 
course “Principles and Practice of Cancer Prevention and Control” in July, 2003. 

 
• I was selected as one of the participants in Center for Spatially Integrated Social 

Science (CSISS) summer workshop, “Geographically weighted regression and 
associated statistics” in August, 2003. 
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REPORTABLE OUTCOMES 

 
 
Abstracts/Presentations 
 
•  “Assessing the Variability of Risk Surfaces using Residential History Data in a 

Case Control Study of Breast Cancer” abstract presented at the Annual Meeting of 
the International Society for Environmental Epidemiology, New York, NY, 
August 2004. (abstract attached) 

 
• “Effects of Lifetime Weight Gain on Breast Cancer Risk” abstract presented at the 

annual meeting of the Society for Epidemiologic Research, Salt Lake City, UT. 
June 2004. (abstract attached) 

 
• “Geographic Clustering of Residence in Early Life and Risk of Breast Cancer” 

paper presented at the Annual Meeting of the Association of American 
Geographers, Philadelphia, PA. March 2004. (abstract attached) 

 
• “Clustering of Cases by Early Life Residence: Evidence for Early Life 

Environmental Exposures in the Etiology of Breast Cancer?” abstract presented at 
The fourth Era of Hope meeting for the Department of Defense Breast Cancer 
Research Program, Philadelphia, PA. June 2005. (abstract attached) 

 
• “Geographic Differences in Breast Cancer Cases and Controls by Genetic and 

Biological Characteristics: Explaining Clustering of Breast Cancer at Place of 
Birth” abstract presented at the Annual Meeting of the American Association for 
Cancer Research. Anaheim, CA. April 2005. (abstract attached) 

 
• “Environmental exposure to traffic polycyclic aromatic hydrocarbons (PAHs) and 

risk of breast cancer” abstract presented at the Annual Meeting of the American 
Association for Cancer Research. Anaheim, CA. April 2005. (abstract attached) 

 
• “Traffic Polycyclic Aromatic Hydrocarbons Genetic Susceptibility and Risk of 

Breast Cancer” abstract presented at the International Congress on Developmental 
Origins of Health and Disease. Toronto, Canada. (abstract attached) 
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Publications 

 
• Han, D. Rogerson, PA. Nie, J. Bonner, MR. Vena, J. Vito, D. Muti, P. Trevisan, 

M. Edge, S. Freudenheim, JL. 2004, “Geographic Clustering of Residence in 
Early Life and Subsequent Risk of Breast Cancer” Cancer Causes and Control 15: 
921-929. (manuscript attached) 

 
• Han, D. Rogerson, PA. Bonner, MR. Nie, J.Vena, JE. Muti, P. Trevisan, M. 

Freudenheim, JL. 2005. Assessing Spatio-Temporal Variability of Risk Surfaces 
using Residential History Data in a Case Control Study of Breast Cancer. 
International Journal of Health Geographics 4:9. (manuscript attached) 

 
• Han, D. Nie, J. Bonner, MR. McCann, SE. Muti, P. Trevisan, M. Ramirez, F. Vito, 

D. Freudenheim, JL. Lifetime Adult Weight Gain, Central Adiposity, and the Risk 
of Pre- and Postmenopausal Breast Cancer in the Western New York Exposure 
and Breast Cancer (WEB) Study. Submitted to International Journal of Cancer. 
(manuscript attached) 
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Geographic Differences in Breast Cancer Cases and Controls by Genetic and 
Biological Characteristics: Explaining Clustering of Breast Cancer at Place of Birth. 
Han, D. Freudenheim, JL. Nie, J. Bonner, MR. Muti, P. Trevisan, M. Vito, D. Edge, 
SB. Luyegu, K. Shields, P. Annual Meeting of the American Association for Cancer 
Research. Anaheim, CA. April 2005. 
 
There is growing evidence that early environmental exposures may be related to risk of 
breast cancer. We had identified previously geographic clustering of residences in early 
life, especially at birth, in relation to breast cancer risk. Because women with glutathione-
S-transferase M1 (GSTM1) null genotypes may be more sensitive to environmental 
insults, we report here on clustering by GST genotype. Further, we examined whether 
there were differences by estrogen receptor (ER) or progesterone receptor (PR) status. 
We conducted a population-based case control study of incident, primary, histologically-
confirmed breast cancer with controls frequency matched to cases on age, race and 
county of residence (the WEB study). All participants provided lifetime residential 
histories; we report here on place of birth. ER and PR status were obtained from medical 
records, and GST genotype was determined by PCR and agarose gel resolution. 
Geographic differences in clustering of breast cancer cases and controls were examined 
by the k-function method, a test for general tendency of spatial clustering, in groups 
stratified by GST genotype and by ER and PR status. We found evidence that breast 
cancer cases with GSTM1 null genotype were more clustered than controls, while there 
was no such evidence among GSTM1 wild genotype. However, there was no indication 
that cases with GSTM1 null genotype were more clustered when compared to cases with 
the wild genotype. We also observed a tendency to clustering among those with ER+ 
tumors relative to controls, but not among other groups defined by either ER or PR status. 
Clustering of women with GSTM1 null genotype may indicate that breast cancer cases 
with GSTM1 null genotype are more likely to share common environmental exposures at 
place of birth, but not necessarily congregated in a specific geographic area, and that such 
genetic susceptibility to early environmental exposure may play a role in subsequent risk 
of breast cancer. The tendency for clustering of ER positive tumors may also indicate that 
there are effects of common exogenous exposures related to place of birth among ER 
positive tumors. These findings are provocative in providing an indication that exogenous 
exposures at the time of birth may affect breast cancer risk.  
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Clustering of Cases by Early Life Residence: Evidence for Early Life 
Environmental Exposures in the Etiology of Breast Cancer? Daikwon Han, Jo L. 
Freudenheim, Matthew Bonner, Jing Nie, Dominica Vito, Paola Muti, Maurizio 
Trevisan, Christine Ambrosone, Stephen Edge, Peter Shields. The Fourth Era of 
Hope Meeting for the Department of Defense Breast Cancer Research Program, 
Philadelphia, PA. June 2005 
 
The role of environmental exposures that may lead to breast cancer is of continuing 
interest in breast cancer epidemiology. There is growing evidence that early life 
exposures may be of significance in the etiology of this disease. While there have been 
studies of breast cancer clusters based on current address, there have been no such 
evaluations of clustering of early life residence. Since clustering of breast cancer in space 
and time may be indicative of potential interactions between exogenous exposures and 
the subsequent risk of breast cancer, we had previously adapted a novel approach, 
Geographic Information Systems (GIS) and spatial analysis methods, to identify 
geographic clustering of residences in early life. Further, we examined whether clustering 
of residence in early life differed by genetic susceptibility. 
We conducted a case control study of incident, primary, histologically confirmed breast 
cancer with controls frequency matched to cases on age, race and county of residence 
(the WEB study). All participants provided lifetime residential histories; we identified 
residential location of participants at the time of their birth, menarche, and their first birth. 
Glutathione-S-transferase (GST) genotype was determined by PCR and agarose gel 
resolution. GIS-based spatial clustering analyses were used to identify geographic 
differences in breast cancer cases and controls in groups stratified by menopausal status 
and by genotype. 
There was a general tendency of geographic clustering for cases for these time periods, and 
the evidence for clustered residences at birth and at menarche was stronger than that for 
first birth, especially among premenopausal women. We also found evidence that cases 
with GSTM1 null genotype were more clustered than controls for these time periods, and 
that the clustering was stronger at birth and at first birth. However there was no such 
evidence among those with GSTM1 wild genotype when compared to controls, nor 
among cases with GSTM1 null genotype when compared to cases with the wild 
genotype. Analyses by both menopausal status and genotype were not included due to 
statistical instability.  
Clustering of residence in early life, especially among cases with GSTM1 null genotype, 
may indicate that they are more likely to share common environmental exposures, and 
that such genetic susceptibility to early environmental exposures may play a role in 
subsequent risk of breast cancer. By incorporating GIS-based spatial analysis methods, 
we have shown that there may be effects of common exogenous exposures related to 
residence in early life, and that such interaction may be important in further assessment 
of early environmental exposures in relation to breast cancer risk. These findings are 
provocative in providing an indication that early exogenous exposures may affect the 
subsequent risk of breast cancer.  
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Environmental Exposure to Traffic Polycyclic Aromatic Hydrocarbons (PAHs) and 
Risk of Breast Cancer. Jing Nie, Jan Beyea, Matthew R. Bonner, Daikwon Han, 
John E. Vena, Peter Rogerson, Dominica Vito, Paola Muti, Maurizio Trevisan, Jo L. 
Freudenheim. Annual Meeting of the American Association for Cancer Research. 
Anaheim, CA. April 2005. 
 

Polycyclic aromatic hydrocarbons (PAHs) are an important component of air pollution 
and potential human carcinogens. While they have been shown to cause mammary cancer 
in animal studies, the association between PAH exposure and breast cancer risk is not 
well understood. Traffic emissions are one of the major sources of PAH exposure in 
cities. Further, growing evidence suggests that there may be critical time periods of 
exposure in breast cancer initiation and development. In this study, we examined the 
association between breast cancer risk and exposure to PAHs from traffic emissions 
estimated for each woman at menarche, at the time when she had her first pregnancy and 
birth, and at 20 and 10 years prior to interview, using data collected from the Western 
New York Exposures and Breast Cancer (WEB) study, a population based case control 
study in western New York. All participants were women, aged 35-79, residents of Erie 
and Niagara Counties. Cases had incident, primary, histologically-confirmed breast 
cancer. Controls were randomly selected and frequency-matched to cases on age, race 
and county. In-person interviews were used to collect data on potential breast cancer risk 
factors including self-reported lifetime residential history. Traffic volumes on roads were 
obtained from historical records for the years from 1960-2002. Tailpipe emission data 
were based on previous reports, including measurements carried out in tunnels or on 
individual vehicles run in place on test beds. A geographic model, developed by Dr. 
Beyea and colleagues from the Long Island Breast Cancer project, was used to 
reconstruct historical traffic PAH, using BaP as a surrogate for total PAH exposure. 
Cruise emissions, cold engine emissions and intersection emissions were used to estimate 
total traffic PAH emissions. Meteorological information was also utilized in the 
geographic dispersion model to assign PAH exposure at each residence. The model was 
validated using data collected from both Long Island and our study area. We found 
evidence that higher exposure to traffic PAH emissions at menarche was associated with 
increased risk of premenopausal breast cancer (OR 2.07, 95% CI 0.91-4.72, p for trend 
0.03) and emissions at the time of a woman's first birth was associated with 
postmenopausal breast cancer (OR 2.58, 95% CI 1.15-5.83, p for trend 0.19). Both 
associations were limited to lifetime non-smokers. There was no association of traffic 
emissions with risk for any of the other time periods. These findings provide evidence for 
both the potential importance of early exposures and the potential importance of an 
environmental agent in risk of breast cancer. 
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Traffic Polycyclic Aromatic Hydrocarbons (PAHs) Genetic Susceptibility and Risk 
of Breast Cancer. Nie, J. Beyea, J. Bonner, MR. Han, D.  Vena, J. Rogerson, P. Vito, 
D. Muti, P. Trevisan, M. Freudenheim, JL. The 3rd International Congress on 
Developmental Origins of Health and Disease. Toronto, Canada. 2005. 
 
Background: Growing evidence suggests that there may be critical time periods of 
exposure in breast cancer initiation and development. Polycyclic aromatic hydrocarbons 
(PAHs) are ubiquitous and exist in the ambient environment at low levels. We previously 
found evidence that exposure to PAHs based on an estimate of exposure to traffic 
emissions in a woman's earlier life may be associated with breast cancer risk in 
adulthood. Glutathione S-transferase mu, a phase II enzyme, is involved in the 
detoxification of PAHs. There is a common GSTM1 genetic polymorphism that is a 
deletion of the entire gene. The GSTM1 null genotype is associated with a deficient 
detoxifying enzyme activity. In this study, we examined the association between GSTM1 
genotypes and breast cancer risk, and interaction with traffic emission-PAH exposure 
estimated for each woman at menarche, at the time when she had her first birth, and at 20 
and 10 years prior to interview, using data collected from the Western New York 
Exposures and Breast Cancer (WEB) study, a population-based case control study. 
Methods: All participants were women, aged 35-79, residents of Erie and Niagara 
Counties. Cases had incident, primary, histologically-confirmed breast cancer. Controls 
were randomly selected and frequency-matched to cases on age, race and county. In-
person interviews were used to collect data on potential breast cancer risk factors 
including self-reported lifetime residential history. Blood samples were collected at the 
time of the interview and used to determine GSTM1 genotype. A geographic model was  
used to reconstruct historical traffic PAH exposure at each residence. Results: There was 
no main effect of GSTM1 on breast cancer risk. While we had previously found an 
association between higher exposure to traffic emission PAHs and breast cancer risk, we 
now found evidence that the association was limited to women with GSTM1 null 
genotype. For exposure at menarche, limited to women living within 250 meters of a road 
with traffic counts, the upper quartile of PAH exposure was associated with increased 
risk of premenopausal breast cancer (OR 4.64, 95% CI 0.98-21.94; p for trend 0.01) and 
emissions at the time of a woman's first birth was associated with increased risk of 
postmenopausal breast cancer (OR 3.27, 95% CI 0.99-10.84, p for trend 0.02). There was 
no association of traffic emissions with risk among women with GSTM1 wild-type, or for 
any of the other time periods. Conclusions: Our findings suggest that there is increased 
risk of breast cancer associated with exposure to traffic emission PAHs in early life, and 
that the association is limited to women with GSTM1 null genotype. 
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Effects of Lifetime Weight Gain on Breast Cancer Risk. D Han, P Muti, M Trevisan, 
J Nie, D Vito, S Edge, J Freudenheim. Annual Meeting of the Society for 
Epidemiologic Research, Salt Lake City, UT. 2004.  
 
While there is quite consistent data regarding increased risk of postmenopausal breast 
cancer with increased body mass index, there is now accumulating data that would 
indicate that weight gain in adult life is more predictive of breast cancer risk. In this 
study, we investigated effects of lifetime weight gain on pre- and postmenopausal breast 
cancer, and effects of weight changes at specific time points in a woman’s life. A 
population-based case control study, the Western New York Exposures and Breast 
Cancer Study(the WEB study) was conducted. Included were 1,170 women with primary, 
histologically confirmed, incident breast cancer and 2,116 controls frequency-matched on 
age and race. Participants were asked to recall their body weight for each decade of their 
lives from age 20 to the present. Total lifetime weight gain, the difference between 
weight one year before interview and weight at age 20, and weight changes between each 
decade were examined. Unconditional logistic regression was used to estimate odds ratios 
(OR) and 95% confidence intervals (CI). An increased risk of breast cancer was found for 
postmenopausal women in the highest (> 27 kg) compared to the lowest quartile (< 9.9 
kg) of total lifetime weight gain (adjusted OR 3.28, 95% CI 2.16-4.98). Risk estimates 
increased in magnitude for increasing time periods of weight gain. Among the 
premenopausal women, lifetime weight gain was not associated with an increased risk of 
breast cancer. This study confirms previous findings of increased risk of breast cancer 
associated with adult weight gain among post- but not premenopausal women, and 
suggest that weight gain over longer periods of time is associated with higher risk. 
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Assessing the Variability of Risk Surfaces using Residential History Data in a Case 
Control Study of Breast Cancer. Daikwon Han, Peter A Rogerson, Matthew R 
Bonner, Jing Nie, John E Vena, Jo L Freudenheim. Annual meeting of the 
International Society for Environmental Epidemiology, New York, NY. 2004  
 
Introduction: Residential location has often been used as a measure of environmental 
exposure in epidemiologic studies. To examine breast cancer risk associated with 
residential history, we explored the spatio-temporal patterns of risk surfaces using data on 
lifetime residential history in a case control study of breast cancer. We applied GIS-based 
exploratory spatial analyses to obtain risk surfaces, and assessed spatio-temporal 
variability of the risk surfaces.  
Methods: A population-based case control study of breast cancer in western New York 
(the WEB Study) includes data on the lifetime residential history for breast cancer cases 
and controls. Participants were asked to provide all locations of earlier residences. 
Density surfaces of cases and controls were obtained using kernel estimation methods, 
and the standardized difference in density surfaces was identified to depict elevated areas 
of breast cancer risk. The significance of the resulting risk surfaces was tested and 
reported as p-values. These surfaces were compared for premenopausal and 
postmenopausal women. To assess the variability of risk surfaces in space and time, the 
standardized difference in density surfaces was obtained for specific time periods in a 
woman’s life and for each decade, from 1940s to 1990s.  
Results:  We found strong evidence of clustering of lifetime residence for premenopausal 
women (for cases relative to controls), and little evidence of such clustering for 
postmenopausal women. We also identified the time points contributing most 
significantly to this result. When density surfaces between cases and controls were 
compared at each time point, we observed that the earlier decades and early time points, 
such as residence at birth and menarche, were more likely to be influential time points in 
understanding overall patterns, relative to the importance of later time points.   
Discussion: We were able to pinpoint geographic areas with higher risk, and to assess 
temporal variability of the risk surfaces by identifying the role of early exposures through 
exploratory spatial analyses.  
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Geographic Clustering of Residence in Early Life and Risk of Breast Cancer. 
Daikwon Han, Annual meeting of the Association of American Geographers, 
Philadelphia, PA. 2004.  
 
This study examines breast cancer risk associated with lifetime residential history using 
GIS-based exploratory spatial analyses. Data on residential history and risk factors were 
collected as part of a population-based case control study of breast cancer in western New 
York. We were interested in whether there was clustering of breast cancer based on 
residential location in early life. Under the hypothesis that early exposures may be related 
to risk of breast cancer, k-function differences between breast cancer cases and controls 
were obtained. We found a general tendency of spatial clustering for residence in early life, 
compared with the simulated theoretical distribution of expected patterns. The evidence for 
clustered residential location at birth and at menarche was stronger than that for first birth 
or other time periods in adult life. Second, relative risk surfaces of cases and controls 
were obtained to depict elevated areas of breast cancer risk using kernel smoothing 
methods. We observed stronger evidence of geographic clustering of lifetime residence 
for pre-menopausal women relative to that for post-menopausal women, and clustering of 
early-life residence relative to that of adult-life residence. Our findings suggest that there 
may be identifiable etiological processes linking exposure and breast cancer risk, 
especially for pre-menopausal women, and that early exposures may be of particular 
importance. This study provides additional evidence that early environmental exposures 
may be related to breast cancer risk. 
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CONCLUSIONS 

 
We have now completed collection of historic traffic information, and completed 

updating of the lifetime residential histories for our dataset for the breast cancer cases and 
controls. The development of a theoretical framework measuring similarity and 
difference of individual’s lifetime residential history was also completed, and a GIS-
based traffic model was established. Because we found evidence of association between 
PAHs exposures in early life in relation to breast cancer risk, these data and 
epidemiologic evidence were used for further analyses, based on the models of geospatial 
lifeline for the estimation of lifetime residential exposures to PAHs and breast cancer risk. 
Findings from these studies indicate that environmental exposures in early life may be 
associated with breast cancer risk. Since we found evidence of association between PAHs 
exposures in relation to breast cancer risk, especially PAH exposures during sensitive 
time periods in early life, we strongly believe that models of geospatial lifeline can be 
effectively used for the estimation of lifetime residential exposures to PAHs and breast 
cancer risk. 
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Abstract

Objective: This study focused on geographic clustering of breast cancer based on residence in early life and identified
spatio-temporal clustering of cases and controls.
Methods: Data were drawn from the WEB study (Western New York Exposures and Breast Cancer Study), a
population-based case–control study of incident, pathologically confirmed breast cancer (1996–2001) in Erie and
Niagara counties. Controls were frequency-matched to cases on age, race, and county of residence. All cases and
controls used in the study provided lifetime residential histories. The k-function difference between cases and
controls was used to identify spatial clustering patterns of residence in early life.
Results: We found that the evidence for clustered residences at birth and at menarche was stronger than that for first
birth or other time periods in adult life. Residences for pre-menopausal cases were more clustered than for controls
at the time of birth and menarche. We also identified the size and geographic location of birth and menarche clusters
in the study area, and found increased breast cancer risk for pre-menopausal women whose residence was within the
cluster compared to those living elsewhere at the time of birth.
Conclusion: This study provides evidence that early environmental exposures may be related to breast cancer risk,
especially for pre-menopausal women.

Introduction

Breast cancer is one of the leading causes of death
among women in the United States. However, the
epidemiology of breast cancer is not yet fully under-
stood. We also do not fully understand mechanisms for
the known risk factors; for instance, why changes in age
at menarche or age at first birth have an impact on
breast cancer risk. A substantial degree of geographical
variation in breast cancer incidence and mortality in the

US has been observed [1, 2]. While inconclusive, several
environmental risk factors are also believed to be
involved in breast cancer incidence [3, 4]. There is
speculation that environmental factors may explain
geographic variation in breast cancer rates not explained
by known risk factors. For this reason, the potential role
of environmental exposures in breast cancer risk is of
particular interest.
In addition, there is a growing interest in early life and

lifetime exposures in relation to breast cancer risk. The
life course approach is of interest because there may be
sensitive time periods for exposures and/or there may be
cumulative effects of lifetime exposure involved in breast
cancer incidence [5, 6]. Early life has an effect on breast
cancer etiology evidenced by the known risk factors

*Address correspondence to: Daikwon Han, Department of Social

and Preventive Medicine, University at Buffalo, 3435 Main St., Farber

Hall, Rm 270, Buffalo, NY 14214, USA. Ph.: +1-716-829-2975 ext.

605; Fax:+1-716-829-2979; e-mail: dhan@buffalo.edu

Cancer Causes and Control 15: 921–929, 2004. 921� 2004 Kluwer Academic Publishers. Printed in the Netherlands.



such as age at menarche, age at first birth and parity.
There is new evidence that even earlier exposures may
have an impact on adult breast cancer risk [7]. Trich-
opoulos [8] suggested that the in-utero and perinatal
period might be pathologically significant and that the
risk of adult breast cancer could be related to high
estrogen exposure in early life. There is also accumulat-
ing evidence that factors related to early exposure, such
as birthweight, may be related to risk [9, 10].
There has been little research investigating possible

effects of environmental exposures in early life on
subsequent breast cancer risk. Using residence as a
proxy measure for environmental exposures, we inves-
tigated whether there was any evidence of geographic
clustering of adult breast cancer cases associated with
their residences in early life. Clustering analyses have
often been used to provide clues for the unknown
etiology of disease, and thus to generate hypotheses for
further epidemiologic research [11]. We looked at the
geographic clustering of residence at early critical time
points: at birth, at menarche, and at the woman’s first
birth. By comparing differences in clustering patterns
between case and control residences, we were interested
in identifying time periods critical to potential environ-
mental exposures and subsequent breast cancer risk.

Methods

Population-based case–control study of breast cancer

We conducted a case–control study of breast cancer in
western New York – the WEB study (Western New
York Exposures and Breast Cancer Study) . Cases were
women, age 35–79 with incident, primary, pathologi-
cally confirmed breast cancer diagnosed in Erie and
Niagara counties during the period 1996–2001, with no
previous cancer diagnosis other than non-melanoma
skin cancer. Controls were frequency matched to cases
on age, race, and county of current residence; controls
under 65 years of age were randomly selected from a
New York State Department of Motor Vehicles list and
those 65 years and over were chosen from a Health Care
Finance Administration list. We ascertained cases by
having a nurse–case finder visit the pathology depart-
ments of almost all hospitals in these counties. One
hospital which did not participate does almost no cancer
surgery and refers patients to other participating hospi-
tals. For the one other hospital that did not participate,
breast cancer cases were identified in the practice of the
breast surgeons who see more than 99% of the cases
from that hospital. Extensive in-person interviews and
self-administered questionnaires were used to ascertain

lifetime residential history and other breast cancer risk
factors. A total of 1166 cases and 2105 controls were
interviewed. Response rates were 72 and 65% for cases
and controls, respectively.
All participants were asked to complete a lifetime

residential history, to list the street address, town/city
and zip code for their current address and then all other
previous addresses throughout their lifetime. Partici-
pants provided 20,240 addresses, an average of approx-
imately six addresses for each individual. In this study
we focused on residence at the time of the participants’
birth, menarche, and at the time that she had her first
birth. Analyses were restricted to women residing in Erie
or Niagara counties at each of these time points. There
were, of course, participants whose addresses were the
same for two or more of these times.
For women with incomplete residential information,

additional information was obtained using historical
city directories. We used these directories to find old
addresses, and utilized various resources, such as web
searches and commercial address databases for recent
addresses. We also examined validity and reliability of
reports of earlier residences in a number of ways. For
birth addresses, we asked for information on birth
address twice and have collected information on reli-
ability of response. For the other time periods, we used
information on maiden name and partial address
information provided by the participants to search for
records in city directories for the appropriate time
periods. To improve our ability to geocode addresses,
we developed several strategies. First, all addresses were
standardized to be matched with the standard format
used in GIS. We used the enhanced version of TIGER
(Topologically Integrated Geographic Encoding and
Referencing Systems), GDT/Dynamap 2000 [12], and
overall matching rates were improved about 15–20 %
when compared with the use of TIGER as a reference
theme. We also used the stand-alone address cleaner
ZP4 (Semaphore Co.) to correct and update zip code
information to be matched with United States Postal
Services certified addresses.
More than 85% of addresses were geocoded using the

above strategies and resources. We failed to geocode
some addresses primarily because of missing residential
information, such as missing street numbers or street
names. Since we are dealing with historical residential
information, the likelihood of missing previous residen-
tial information was higher than that for current
residential information. Table 1 is a summary table
showing the numbers of cases and controls with
complete residential information who resided in the
two counties for each of the time periods. The percent-
age of missing residential information associated with
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each early life event was highest for birth addresses, at
about 20%.

Clustering analyses of residences

To compare clustering patterns of breast cancer cases
and controls at each time period, the primary method
used was based on the k-function [13]. The k-function
for a point process is defined as the number of events
within distance h of an arbitrary event, divided by the
overall intensity of events. It is estimated by

kk̂ðhÞ ¼
Xn

i¼1

Xn

j¼1

wðsi; sjÞ�1Iðdij � hÞ=n; h > 0

where n is the number of events, k is the expected density
of events in the study region, h is the pre-specified
distance, dij is the Euclidian distance between point i and
point j, I is an indicator function that is equal to one if
inter-event distances (dij) are less than or equal to h, and
zero otherwise, and w(si, sj) is an edge correction
estimator which is the proportion of the circumference
of a circle centered at si, passing through sj and that is
inside the study area A [14]. Under the null hypothesis of
spatial randomness, the expected value of k(h) is ph2.
Geographic clustering will yield values of the k-function
that are greater than this, since clustering will result in
more pairs of points separated by a distance of h than
would be expected in a random pattern.
We used the difference between k-functions for cases

and controls to compare two patterns (i.e., D(h) = kcase
(h) – kcontrol (h)). Positive values of D(h) indicate spatial
clustering of cases relative to the spatial clustering of
controls. Under the null hypothesis of random labeling
of cases and controls, the expected value of D(h) is zero,
indicating that the k-functions of the cases and controls
are the same. The test statistic, D(h), was calculated with
confidence envelopes using the splancs library in S-plus
[15]. We obtained the approximate 95% confidence
limits for two standard errors ð� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfDðhÞg

p
Þ at the

a ¼ :05 level [16]. When the estimated function D(h)
deviated from zero by greater than two standard
deviations, we interpreted this as a statistically signifi-
cant difference between the case and control patterns.
We also employed a spatial clustering method to

identify significant geographic clusters of breast cancer
cases. The spatial scan statistic [17], which considers the
likelihood of observing the actual number of cases inside
of a circle under the null hypothesis of no clustering, was
applied to residence at early life events. We were mainly
interested in spatial clustering of high rates, and
employed the Bernoulli model based on the locations
of individual cases and controls [18]. In addition, odds
ratios (OR) and 95% confidence intervals (95% CI)
were obtained using logistic regression, adjusting for
age, education, age at menarche, parity, history of
benign breast disease, family history of breast cancer.
All analyses were conducted for the entire group of
study participants and for data stratified on menopausal
status. Women were considered post-menopausal if their
menses had ceased permanently and naturally. Among
other women, participants were also considered
post-menopausal if any of the following conditions were
true: they were on hormone replacement therapy and
were over age 55, they had had a bilateral oophorec-
tomy, they had had a hysterectomy without removal of
the ovaries and they were older than 50, their menses
had ceased permanently due to radiation or other
medical treatment and they were older than 55.

Results

Characteristics of subjects included in the analysis,
subjects with missing residential information, and sub-
jects excluded due to residence outside of Erie and
Niagara counties, are shown in Table 2. About half of
the sample was excluded for each time period; the
highest percentage of ineligible cases and controls was at
the birth residence (46 and 51% respectively). However,
we found little difference in characteristics between

Table 1. Residential history of breast cancer cases and controls: numbers and percentage of complete and missing residences in Erie and Niagara

counties: WEB Study, 1996–2001

Complete residence Incomplete or missing residence Total eligible Erie and Niagara county

residence at each time period

Case Control Case Control Case Control

Birth 505 (79.9%) 804 (81.0%) 127 (20.1%) 189 (19.0%) 632 993

Menarche 673 (87.3%) 1143 (88.1%) 98 (12.7%) 154 (11.9%) 771 1297

First birth 616 (86.4%) 1153 (87.3%) 97 (13.6%) 167 (12.7%) 713 1320
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those subjects included and those subjects with ad-
dresses outside of these two counties.
Mapping was used to identify geographic patterns of

breast cancer cases and controls for each of the early life
events. Maps showing the locations of cases and
controls in Figure 1 portray the underlying geographic
patterns of breast cancer cases and controls in the study
area. The rectangular region was used instead of the
actual county boundary as an approximate boundary of
the study area to protect individuals’ confidentiality.
The purpose of such mapping is to inspect patterns
visually – the first step in any spatial analysis. Geo-
graphic patterns do not appear to vary much from one
time period to the next, and they appear to reflect
patterns of population distribution in the study area.
However, it is difficult to determine whether they were
clustered or dispersed relative to population from visual
inspection alone, because of the large number of data
points.

To assess potential effects of geographic selection bias
in our study, we also examined the distribution of current
residence in relation to other population data on the
geographic distribution of breast cancer cases and the
general population. We did not find differences in the
geographic distribution of participating and non-parti-
cipating cases, or between controls and the underlying
population, except some tendency for both cases and
controls living closer to the interview site to be somewhat
more likely to participate than those living further away.

Spatial clustering of residences associated with early life

events

We obtained differences between the case and control
patterns for locations associatedwith each early life event.
The k-function differences for values of h up to 15 miles,
with approximate 95% confidence envelopes, are shown

Table 2. Characteristics of subjects included in the analysis, subjects with missing residential information, and subjects excluded due to residence

outside of the study area (Mean � SD): WEB Study, 1996–2001

Cases (n = 1166) Controls (n = 2105)

Included Missing Ineligible* Included Missing Ineligible*

Birth (n = 505) (n = 127) (n = 534) (n = 804) (n = 189) (n = 1112)

Age (years) 56.5 � 10.9 60.0 � 11.0 58.9 � 11.3 55.6 � 11.7 58.0 � 11.8 59.4 � 11.7

Education (years) 13.5 � 2.4 13.1 � 2.5 13.6 � 2.7 13.4 � 2.2 13.2 � 2.2 13.3 � 2.5

Parity 2.2 � 1.5 2.4 � 1.7 2.4 � 1.8 2.6 � 1.8 2.7 � 1.8 2.8 � 1.8

Age at menarche (years) 12.4 � 1.5 12.6 � 1.5 12.7 � 1.7 12.7 � 1.7 12.6 � 1.6 12.7 � 1.7

Age at first birth (years) 24.3 � 4.6 23.5 � 4.5 24.2 � 5.1 24.5 � 4.3 23.5 � 4.2 24.0 � 4.7

Pre-menopausal (%) 35.2 18.9 26.4 31.7 28.6 24.6

Body Mass Index 28.2 � 6.4 28.4 � 5.8 28.7 � 6.4 28.0 � 6.2 28.2 � 6.0 28.4 � 6.4

Family history of breast cancer (% yes) 21.3 18.9 20.2 12.7 16.2 12.4

History of benign breast disease (% yes) 34.9 37.0 32.8 22.3 25.9 20.6

Menarche (n = 673) (n = 98) (n = 395) (n = 1143) (n = 154) (n = 808)

Age (years) 56.6 � 10.7 60.1 � 11.6 59.5 � 11.3 56.0 � 11.7 60.2 � 11.7 59.9 � 11.6

Education (years) 13.5 � 2.4 12.8 � 2.6 13.6 � 2.8 13.4 � 2.2 13.0 � 2.3 13.3 � 2.6

Parity 2.2 � 1.6 2.8 � 1.8 2.5 � 1.8 2.6 � 1.8 2.9 � 2.1 2.9 � 1.8

Age at menarche (years) 12.5 � 1.6 12.8 � 1.5 12.7 � 1.7 12.7 � 1.6 12.6 � 1.7 12.7 � 1.7

Age at first birth (years) 24.3 � 4.6 23.0 � 4.3 24.2 � 5.3 24.4 � 4.5 23.8 � 4.4 24.0 � 4.6

Pre-menopausal (%) 30.3 24.5 24.6 33.8 23.4 23.3

Body Mass Index 28.1 � 6.2 29.5 � 6.4 28.7 � 6.5 28.3 � 6.5 27.6 � 5.5 28.2 � 6.1

Family history of breast cancer (% yes) 20.2 22.4 20.6 13.1 13.2 12.1

History of benign breast disease (% yes) 34.5 40.8 31.9 22.3 19.5 21.3

First Birth (n = 616) (n = 97) (n = 453) (n = 1153) (n = 167) (n = 785)

Age (years) 57.4 � 11.1 58.9 � 10.8 58.5 � 11.2 57.0 � 11.7 60.6 � 10.7 58.5 � 12.0

Education (years) 13.4 � 2.3 13.0 � 2.9 13.7 � 2.8 13.3 � 2.2 13.0 � 2.1 13.4 � 2.6

Parity 2.7 � 1.3 3.1 � 1.5 1.7 � 1.9 3.0 � 1.5 3.4 � 1.7 2.2 � 2.0

Age at menarche (years) 12.6 � 1.5 12.5 � 1.8 12.6 � 1.6 12.7 � 1.6 12.6 � 1.5 12.7 � 1.7

Age at first birth (years) 24.8 � 4.8 22.2 � 4.1 23.4 � 4.9 24.7 � 4.6 22.9 � 3.5 23.3 � 4.4

Pre-menopausal (%) 29.4 26.8 26.0 32.2 18.0 26.6

Body Mass Index 28.4 � 6.3 30.1 � 6.6 28.2 � 6.3 28.1 � 6.1 28.3 � 6.5 28.4 � 6.4

Family history of breast cancer (% yes) 21.2 23.7 18.6 11.5 19.4 13.6

History of benign breast disease (% yes) 34.7 37.1 32.7 21.0 25.1 22.0

* Ineligible due to residence outside of Erie and Niagara county.
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in Figure 2. Themaximum value of h is generally taken as
one-third of the linear extent of the study area [19]. Any
patterns beyond this scale can be disregarded, since either
peaks or troughs in this geographic scale are difficult to
interpret, and are potentiallymisleading. Figure 2a shows
k-function differences for birth residence. It is clear that
the estimated function shows strong evidence of spatial
clustering, that is, of clustering of cases relative to
controls. There was no significant difference up to three
miles; statistically significant differences were detected
beyond the scale of three miles. There is also evidence of
some degree of clustering for breast cancer cases at
menarche residence (Figure 2b). Estimates of the D-
function are positive but not statistically significant up to
seven miles; spatial clustering of breast cancer cases
occurs at a scale of about 7–15 miles. For residence at
women’s first birth and for current residence, the differ-
ence is not statistically significant; the plot falls within the
confidence interval over all distances (Figures 2c and d).

To determine whether there are any differences in
clustering patterns by menopausal status, the k-function
difference was performed for pre-menopausal and post-
menopausal women separately (Figure 3). We found
significant clustering of pre-menopausal breast cancer
cases compared to controls for both birth and menarche
residence (Figures 3a), while there is no evidence of
clustering for post-menopausal breast cancer cases for
either period (Figures 3b). We did not find evidence of
clustering for first birth and current residence (at
diagnosis) for either group (not shown). Estimated
functions at birth residence show a strong clustering of
pre-menopausal cases over the entire geographic scale
with a peak at seven miles. Values are positive for post-
menopausal cases, but not statistically significant. For
menarche residence, we also observed a strong clustering
of pre-menopausal cases with a peak at about 8–10 miles.
Again differences are not statistically significant for post-
menopausal women at menarche residence.

Fig. 1. Residential location of breast cancer cases and controls at each time period: WEB Study, 1996–2001.
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Identifying the geographic location of breast cancer clusters

To identify the geographic location of areas with higher
intensities for pre-menopausal cases in the study area,

the spatial scan statistic was applied to residences of
pre-menopausal women at the time of birth and
menarche. Maps in Figure 4 present results of the
clustering analysis. The circle in Figure 4a indicates

Fig. 2. k-function differences in clustering patterns between breast cancer cases and controls, WEB Study, 1996–2001: shown are k-function

differences in black and 95% confidence limits in grey.

Fig. 3. k–function differences in clustering patterns between breast cancer cases and controls by menopausal status, WEB Study, 1996–2001.

926 D. Han et al.



clustering of birth residence for pre-menopausal cases
when compared to controls. We found a circular cluster
of birth residence for breast cancer cases with a 5.7-mile
radius in the area including part of the city of Buffalo,
and the towns of Amherst, Cheektowaga, and Tona-
wanda (shaded areas). There are 100 observed breast
cancer cases inside the cluster, while 76 breast cancer
cases are expected. The cluster was significant at <0.01
with 999 Monte-Carlo simulations.
Further, we examined breast cancer risk associated

with residence in the cluster at the time of birth. When
we compared other breast cancer risk factors, such as
age, education, and age at menarche, for the pre-men-
opausal breast cancer cases and controls whose birth
residence was inside the cluster to those who lived
outside of cluster, we did not find significant differences
between the two groups (data not shown). We observed
an elevated breast cancer risk for pre-menopausal
women living in the cluster at the time of birth. With
subjects living outside the cluster as a reference group,
the adjusted odds ratio was 2.65 (95% CI 1.75–4.0) after
controlling for age, education, age at menarche, parity,
history of benign breast disease, and family history of
breast cancer.
We also identified clustering of menarche residence

for pre-menopausal women and obtained similar results

as for birth residence. We were able to identify a small
clustering of menarche residences for pre-menopausal
breast cancer cases. A small cluster in the center of those
four towns was detected (Figure 4b). It is a cluster with
0.8 mile radius and is statistically significant at
p < 0.05. The cluster contains nine observed and 3.1
expected breast cancer cases, yielding a relative risk
(ratio of observed to expected breast cancer cases) of
2.9. A secondary cluster was also detected near the city
of Buffalo. It has a three-mile radius and relative risk of
1.38 with 65 observed and 47 expected breast cancer
cases, but it is not statistically significant (p¼ 0.38).

Discussion

To our knowledge, no other studies have examined
clustering of residential locations associated with cancer
during early life: studies have examined clustering of
residential locations at the time of diagnosis or death
[20]. Critical time periods, including birth, menarche,
and women’s first pregnancy, as important early life
and reproductive events in women’s life, may play a
substantial role in the risk of breast cancer. Under the
hypothesis that there may be sensitive time periods in
women’s lives that will carry greater risk for exposure,

Fig. 4. Geographic clustering of residence at birth and menarche: pre-menopausal breast cancer, WEB Study, 1996–2001.
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the essential question was whether cases were more
clustered than the underlying population, as repre-
sented by the controls. We found that cases were more
clustered than controls at the time of birth and
menarche, and it was due to clustering of residence
for pre-menopausal, but not for post-menopausal
breast cancer. The evidence for clustering of residential
locations at birth and menarche was stronger than
evidence for clustering at the time of women’s first birth
or other time periods in adult life. Our findings suggest
that there may be identifiable etiological processes
linking exposure and breast cancer risk, especially for
pre-menopausal women, and that early exposures may
be of particular importance.
This study provided a unique opportunity to examine

clustering of breast cancer cases and controls at various
points during early life. The facts that the study area had
a relatively stable population and about 40% of study
participants were lifetime residents, made the results
more reliable. The evidence that residence in early life
was important in the geographical clustering of breast
cancer cases may be of particular importance for
understanding environmental determinants of breast
cancer. These findings suggest the importance of early or
lifetime exposure in relation to disease risk in adult life,
and also the potential role of the effects of migration on
exposures and disease risk. Although migration can
have a serious effect on the detection of geographical
differences in disease risk, it has not been adequately
addressed in previous clustering analyses [21]. Further
investigations are required to prove any relationship
between geographic clustering of residence and breast
cancer risk, and the effects of residential changes on
exposures should be considered in these studies.
Our finding of clustering was restricted to pre-

menopausal breast cancer. We stratified on menopausal
status because of evidence that there were differences in
risk factors for pre- and post-menopausal women [22].
The mechanism of the observed difference is not clear.
It could be that early life exposures impact pre-
menopausal more than post-menopausal disease
because of greater temporal proximity. There is some
evidence, though not consistent, that other early expo-
sures may differ by menopausal status. For example,
there are data suggesting that birthweight may be more
associated with pre- than with post-menopausal breast
cancer [9, 23].
The results should be interpreted cautiously due to the

fact that there may be some artifacts of the analysis.
First, it is important to note that spatial point patterns
are complex to summarize in a single way [24]. For
example, the use of cumulative scales in the application
of the k-function method may influence the outcome

[25]. In particular, clustering is more likely to be
detected on a larger geographic scale, and it tends to
show continuous patterns over several neighboring scales
due to the fact that the geographical scales are cumu-
lative. Further refinement of methods to summarize
spatial point patterns may provide more reliable results,
as well as more accurate estimates of disease risk.
Second, this study is limited to current residents in the

study area because we focused on the residential
environment of Erie and Niagara counties; participants
residing outside of these two counties at the time of each
early life event were not included. The existence of
missing residential information and potential selection
bias due to non-participation may influence the results.
As noted, we found no difference in participation by
residence for cases compared to controls. Further we
would expect that our findings on the clustering of
early-life residence would be less subject to potential
geographic selection bias than would current residence.
We found a greater degree of clustering for residence at
early life than for current residential location.
Further, the fact that residence at birth and menarche

were often the same made it difficult to differentiate
associations for the two time periods. For 22% of cases
and 35% of controls, the menarche residence was the
same as their birth residence. While the observed
tendencies may be related to environmental exposures,
it is also possible that clustering of residence at the time
of birth or menarche may be due to clustering of other
socioeconomic or demographic factors. Evaluation of
the contribution of socioeconomic status to clustering of
residences at birth and menarche is of special interest.
There may be other factors associated with residence not
measured in this study. The findings are still of interest
for further study in order to understand what those
exposures might be. We are now investigating the
relation between spatio-temporal clustering of resi-
dences and exposures to environmental compounds,
such as PAHs and benzene, to provide epidemiologic
evidence of this finding.
Since the publication of John Snow’s [26] well-known

cholera map for the city of London in the 19th century,
the relationship between the environment and disease
has been one of the major research themes in medical
geography. Geographic perspectives are of great use in
describing geographical patterns of diseases, generating
hypotheses on disease etiology, monitoring high risk
areas of disease incidence, and suggesting possible
causal factors of particular disease [27, 28]. Our study
demonstrated that these GIS-based clustering analyses
provide effective ways to explore spatial–temporal
patterns of clustering. The findings show consistent
results; the cluster identified by spatial analyses
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remained significant when traditional epidemiologic
methods were used, and it was not explained by
potential confounders. A recent study comparing ‘tra-
ditional’ epidemiological methods, GIS, and point
pattern analysis for use in the spatially referenced public
health data concluded that results complement, rather
than contradict or duplicate each other [29].
In summary, this analysis of breast cancer clustering

in space provides evidence of geographic clustering of
pre-menopausal, but not post-menopausal, breast can-
cer cases at the time of birth and menarche, suggesting a
possible influence of exogenous risk factors on breast
cancer at these time points. While it is not clear from
these data what caused this spatial clustering, it is
provocative in providing evidence of the importance of
this early period in breast carcinogenesis. Further
investigations on genetic susceptibility may be of
relevance to identify different effects on pre- and post-
menopausal breast cancer. It will also be meaningful to
see whether there is temporal clustering of early-life
residences as well as spatial clustering. This type of
study also needs to be replicated in other settings.
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Abstract
Background: Most analyses of spatial clustering of disease have been based on either residence at the
time of diagnosis or current residence. An underlying assumption in these analyses is that residence can
be used as a proxy for environmental exposure. However, exposures earlier in life and not just those in
the most recent period may be of significance. In breast cancer, there is accumulating evidence that early
life exposures may contribute to risk. We explored spatio-temporal patterns of risk surfaces using data
on lifetime residential history in a case control study of breast cancer, and identified elevated areas of risk
and areas potentially having more exposure opportunities, defined as risk surfaces in this study. This
approach may be more relevant in understanding the environmental etiology of breast cancer, since
lifetime cumulative exposures or exposures at critical times may be more strongly associated with risk for
breast cancer than exposures from the recent period.

Results: A GIS-based exploratory spatial analysis was applied, and spatio-temporal variability of those risk
surfaces was evaluated using the standardized difference in density surfaces between cases and controls.
The significance of the resulting risk surfaces was tested and reported as p-values. These surfaces were
compared for premenopausal and postmenopausal women, and were obtained for each decade, from the
1940s to 1990s. We found strong evidence of clustering of lifetime residence for premenopausal women
(for cases relative to controls), and a less strong suggestion of such clustering for postmenopausal women,
and identified a substantial degree of temporal variability of the risk surfaces.

Conclusion: We were able to pinpoint geographic areas with higher risk through exploratory spatial
analyses, and to assess temporal variability of the risk surfaces, thus providing a working hypothesis on
breast cancer and environmental exposures. Geographic areas with higher case densities need further
epidemiologic investigation for potential relationships between lifetime environmental exposures and
breast cancer risk. Examination of lifetime residential history provided additional information on
geographic areas associated with higher risk; limiting exploration of chronic disease clustering to current
residence may neglect important relationships between location and disease.
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Background
In a recent analysis of breast cancer by New York State's
Department of Health, a breast cancer cluster in the West-
ern New York area was identified [1]. One of the objec-
tives of such disease mapping is to generate hypotheses by
identifying spatial patterns so that causal processes may
be evaluated further by more rigorous epidemiologic
study. Spatial analyses have played a valuable role in
explaining different health outcomes and in uncovering
environmental causes of disease [2,3]. Residential loca-
tions at the time of diagnosis have generally been used in
these exploratory spatial analyses [4,5]. Disease mapping
has been increasingly used to identify spatial patterns with
the aid of Geographic Information Systems (GIS) and
exploratory spatial analysis tools, and has been a valuable
tool for studies of geographic and environmental epide-
miology, especially when the causes of disease and their
determinant processes are unknown [6-8]. In particular,
there has been recent interest in the use of kernel density
estimation methods in epidemiologic studies. Density
estimation methods have been used to smooth out noise
based on functions of the data in surrounding areas and
to overcome problems associated with traditional disease
mapping [9,10].

Previous studies using exploratory spatial analyses, how-
ever, have been based on either residence at the time of
diagnosis or current residence, and only a few recent stud-
ies have examined disease risk using information on life-
time residence [11,12]. For chronic disease, there is
increasing evidence that lifetime exposures may be more
relevant in understanding disease etiology. For breast can-
cer in particular, several of the well established risk factors
(age at menarche, age at first birth) are from early life.
There is now evidence that childhood and even in utero
exposures may affect risk [13]. To examine disease cluster-
ing, lifetime cumulative exposures or exposures at critical

times in a life course may be more strongly associated
with risk for breast cancer than exposures from any one
time period, especially the recent period.

In this study, we explored spatio-temporal patterns of risk
surfaces using data on lifetime residential history in a case
control study of breast cancer. We had previously identi-
fied geographic clustering of residence at critical points in
early life in relation to breast cancer risk [14]. Here we
focused on lifetime cumulative exposure in relation to the
disease risk. Risk surfaces were created based on the rela-
tive densities of cases and controls – this indicated areas
with higher case density as being areas with higher breast
cancer risk, thus identifying areas potentially having more
exposure opportunities. We used residence as a proxy for
potential environmental exposures, conducted explora-
tory spatial analyses of breast cancer, and produced risk
surface maps using information on lifetime residence to
identify areas with high breast cancer incidence. In partic-
ular, we assessed spatio-temporal variability of risk sur-
faces using the standardized difference in case and control
density, and evaluated the potential use of different kernel
density estimation methods in applying them to epidemi-
ologic data.

Results
Descriptive characteristics of study participants by meno-
pausal status are presented in Table 1, and characteristics
of lifetime residential history for breast cancer cases and
controls are summarized in Table 2. One-fourth of the
study participants had at least one previous residence out-
side the study area, and these were excluded from the
analysis. For those residences in the study area, we found
that cases were somewhat more mobile, averaging 5.8 and
5.4 residences for pre- and postmenopausal participating
cases, compared to 4.9 and 5 residences for pre- and post-
menopausal participating controls, respectively.

Table 1: Descriptive characteristics of study participants (Mean ± Standard Deviation): WEB Study, 1996–2001.

Premenopausal Postmenopausal

Case (n = 325) Control (n = 610) Case (n = 841) Control (n = 1495)

Age (years) 44.9 ± 4.6 44.1 ± 4.6 63.0 ± 8.5 63.4 ± 8.9
Education (years) 14.0 ± 2.3 14.2 ± 2.2 13.3 ± 2.6 13.0 ± 2.3
Parity 1.9 ± 1.3 2.0 ± 1.3 3.0 ± 1.9 2.5 ± 1.8
Age at menarche (years) 12.5 ± 1.6 12.6 ± 1.6 12.6 ± 1.6 12.8 ± 1.7
Age at first birth (years) 25.0 ± 5.1 25.8 ± 4.8 23.8 ± 4.7 23.5 ± 4.3
Recent BMI (kg/m2) 26.7 ± 6.6 27.2 ± 6.8 28.9 ± 6.1 28.4 ± 6.4
Benign breast disease (yes) 37% 21% 33% 22%
Relative with breast cancer (yes) 21% 10% 20% 14%
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We constructed lifetime cumulative risk surfaces to repre-
sent exposure opportunities in lifetime because cumula-
tive exposures may be a more accurate indicator of
potential environmental exposures related to breast can-

cer risk. Figure 1 shows a boundary map of Erie and Nia-
gara counties, while Figure 2 depicts geographic patterns
of lifetime residential locations for breast cancer cases and
controls by menopausal status. We used the rectangular
region as an approximate boundary of the study area to
protect individuals' confidentiality. In the study area,
there are 4,812 lifetime residential locations for cases
(1,328 pre-menopausal and 3,484 post-menopausal resi-
dences), and there are 7,886 lifetime residential locations
for controls (2,270 pre-menopausal and 5,616 post-men-
opausal residences).

We evaluated spatial patterns of risk surfaces based on the
geographic distribution of lifetime residences in Figure 2.
Risk surfaces based on the standardized difference
between case and control densities were obtained, and
areas with relatively higher case density were identified by
menopausal status in Figure 3. In the figure, areas with dif-
ference greater than 2 standard deviations (SD) were por-
trayed as contours and areas exceeding critical values were
portrayed as red images. Testing for significance was per-
formed and reported as p-values. Those areas with stand-
ardized difference greater than 2 SD were quite different
between pre- and postmenopausal breast cancer,
although ranges of standardized the difference were simi-
lar; -6.37 to 4.43 for pre-menopausal, and -6.57 to 3.39
for postmenopausal breast cancer, respectively. There
were about 29 rectangular grids in those areas greater than
2 SD for premenopausal, while about 59 grids for post-
menopausal breast cancer. Further, the statistical signifi-
cance of areas must be assessed in light of the fact that
multiple areas are tested; these are statistically significant
if the difference in density exceeds the critical value of
3.56 at α = 0.05 (determined by simulation, where ran-
dom labelling of cases and controls is carried out). There
is one small geographic area of special interest for pre-
menopausal residences in the central and upper region of
the city. When these are compared with the geographic

Table 2: Descriptive characteristics of lifetime residential history for breast cancer cases and controls: WEB Study, 1996–2001;

Erie and Niagara (n = 15487) Outside (n = 4752) Total (n = 20240)

Case Control Case Control Case Control

Premenopausal
Total numbers of residences in lifetime 1661 2767 432 948 2093 3715
Average numbers of residences per participant 5.8 4.9 3.2 3.4 5.0 4.4
Average years in each residence* (Mean ± SD) 5.6 ± 6.0 6.2 ± 6.6 4.3 ± 5.4 3.9 ± 4.9 5.3 ± 5.9 5.5 ± 6.3

Postmenopausal
Total numbers of residences in lifetime 4217 6842 1290 2082 5508 8924
Average numbers of residences per participants 5.4 5.0 3.5 3.2 4.8 4.4
Average years in each residence* (Mean ± SD) 6.9 ± 7.3 7.3 ± 7.9 4.8 ± 5.6 5.2 ± 6.3 6.3 ± 7.0 6.7 ± 7.6

* Excludes residences with missing data for length of residence.

Map of study area: Erie and Niagara counties with zip-code boundariesFigure 1
Map of study area: Erie and Niagara counties with zip-code 
boundaries.
Page 3 of 10
(page number not for citation purposes)



International Journal of Health Geographics 2005, 4:9 http://www.ij-healthgeographics.com/content/4/1/9
location of clusters of birth and menarche residences
identified previously [14], we found that the size and loca-
tion of these areas are about the same as clusters of
menarche residences, but somewhat smaller than the clus-
ters of birth residences. Thus, it is more likely that the
same individuals are in both clusters. For post-menopau-
sal residences, no area exceeding the critical value was
detected.

Next, we evaluated effects of other risk factors on the risk
surfaces. To create age-adjusted risk surfaces, the standard-
ized difference between case and control densities strati-
fied by menopausal status and age groups was examined.

Table 3 presents the variability of risk surfaces when
stratified by menopausal status and age groups. While
there were similar numbers of geographic areas greater
than 2 SD regardless of menopausal status and age groups,
we found areas (about 8 rectangular grids) greater than
critical values only for residences for premenopausal
women, aged 35–44, and the geographic location of those
areas was identical to the areas identified in Figure 3. In
addition, we evaluated the effects of one known risk fac-
tor, nulliparity, on those spatial patterns of risk surfaces.
Risk surfaces were examined in two groups, nulliparious
women and those with at least one child. We observed no
difference in spatial patterns of risk surfaces for these two

Geographic distribution of breast cancer in Western New York;Figure 2
Geographic distribution of breast cancer in Western New York; Shown are all residential locations of breast cancer 
cases and controls by menopausal status included in the analysis. One dot indicates each residential location. The rectangular 
region was used as an approximate boundary of the study area instead of actual county boundary in Figure 1. East (x) and north 
(y) coordinates in projected Universal Traverse Mercator (UTM) miles.
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groups.; for premenopausal women, there were seven and
two geographic areas greater than critical values for nulli-
parious and parous women, respectively, but none was
detected for either group of postmenopausal residences
(data not shown).

Lastly, we were interested in evaluating temporal variabil-
ity of risk surfaces; the standardized difference was
obtained for each decade, for both pre- and post-meno-
pausal residences, from the 1940s to 1990s (Table 4).
While there was not much difference in the number of
areas greater than 2 SD for both menopausal groups, we

were able to find geographic areas greater than critical val-
ues in the 1960s through 1990s only for residences of
premenopausal women. This is consistent with results
from the above spatial analysis.

Discussion and conclusions
This study explored the use of kernel density estimation
methods to identify spatio-temporal patterns of risk sur-
faces in a case-control study of breast cancer. We used
standardized differences between case and control densi-
ties to produce risk surfaces. These risk surfaces were
assessed for both pre- and postmenopausal breast cancer.

Table 3: Standardized difference of residences for premenopausal and postmenopausal breast cancer cases and controls by age 
groups;

Premenopausal Case
(n = 1328)

Control
(n = 2270)

Standardized 
differences

No. of areasa > 2SD No. of areasa > critical 
valuesb

Ages 35–44
(n = 1889)

647 1242 -5.12–5.88 34 8

Ages 45–56
(n = 1709)

681 1028 -4.72–3.14 30 0

Postmenopausal Case
(n = 3484)

Control
(n = 5616)

Standardized 
differences

No. of areas > 2SD No. of areas > critical 
values

Ages 40–64
(n = 4916)

2115 2801 -3.52–3.77 49 0

Ages 65–79
(n = 4184)

1369 2815 -4.50–3.15 40 0

a Areas refer to the rectangular grid overlaid on to the study area, b Critical values of 3.88 for premenopausal and 3.71 for postmenopausal 
residences.

Table 4: Standardized difference of residences for premenopausal and postmenopausal breast cancer cases and controls by decades;

Decades Case Control Standardized 
differences

No. of areasa > 
2SD

No. of areasa > 
critical valuesb

Premenopausal 1940s 36 86 -2.35–2.12 2 0
1950s 222 461 -2.45–3.15 9 0
1960s 341 633 -4.02–3.78 21 2
1970s 514 1025 -3.89–3.96 35 2
1980s 552 1005 -4.26–4.50 24 3
1990s 457 723 -4.06–4.14 32 5

Postmenopausal 1930s 389 676 -2.51–2.62 24 0
1940s 809 1253 -3.01–3.04 23 0
1950s 1158 1968 -3.66–2.91 22 0
1960s 1247 2072 -4.18–2.99 18 0
1970s 1100 1839 -4.98–3.13 21 0
1980s 960 1651 -3.84–2.85 23 0
1990s 943 1542 -4.40–3.57 22 0

a Areas refer to the rectangular grid overlaid on to the study area, b Critical values of 3.88 for premenopausal and 3.71 for postmenopausal 
residences.
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We found a general tendency for spatial clustering of
breast cancer cases, and observed stronger evidence of
geographic clustering for pre-menopausal women than
for postmenopausal women. Geographic areas greater
than 2 SD of the standardized difference were identified
among lifetime residences for pre- and postmenopausal
women, but more rigorous testing showed such evidence
only for premenopausal residences. We were able to pin-
point geographic areas with relatively higher case densi-
ties, and to assess temporal variability of risk surfaces.

This study focused on the investigation of breast cancer
risk associated with lifetime residential history using GIS-
based exploratory spatial analyses. Since environmental
risk factors are of continuing interest in breast carcinogen-
esis, this approach may be more relevant in understand-
ing the environmental etiology of breast cancer [15,16].
Residential location has often been used as a proxy for
exposures, and the relationships between residential
environment and breast cancer risk have been a focus in
recent epidemiologic studies [17-19]. Although the role of
clustering analyses remains controversial in scientific
advances in our understanding of disease etiology
[20,21], these GIS-based exploratory spatial analyses are
well suited for environmental epidemiologic investiga-
tions; this study demonstrated that smoothed risk surfaces
created by kernel methods are useful for large sets of data
in space and time, but also when the form of cluster is not
well defined. This method can be applied to other
epidemiologic analyses. For example, this GIS-based spa-
tial analysis can be effectively used in exposure analyses
and assessment, as previously used in identifying people
potentially exposed to environmental risk factors [22,23].

Given that these are exploratory methods, however, it is
meaningful to compare the strengths and limitations of
different approaches when applied to epidemiologic data.
We have chosen the standardized difference approach to
represent risk surfaces, as opposed to other methods (such
as risk ratios) that can be used to create risk surfaces,
because it is more easily able to handle the difficulties that
arise with small densities. Unsmoothed risk surfaces are
relatively easy to manipulate, but they are sensitive to geo-
graphic scales, while the ratio of case to control density
results in unstable risk surfaces due to small number prob-
lems. We were able to reduce this problem in creating risk
surfaces based on a standardized difference approach. The
selection of optimal bandwidths in the application of ker-
nel methods to cluster detection, and comparison of dif-
ferent types of bandwidths, such as adaptive kernel, will
be a subject of future study [24].

It is important to note that current approaches to obtain-
ing density surfaces of lifetime breast cancer risk are lim-
ited in several ways. First, we are using residential

locations of breast cancer cases and controls; we obtained
the difference in densities (risk surfaces) based on their
residential location to identify areas with relatively higher
case density. We do not know actual exposures and breast
cancer risk associated with residential locations. However,
this study provides evidence of differential exposure
opportunities among cases and controls for further epide-
miologic assessment, since spatio-temporal clustering of
residential locations in a life course may be an indicator
of differential exposure opportunities and the subsequent
risk of breast cancer. Another limitation of this analysis is
that we were unable to incorporate length of residence
into the model. We were able to visualize risk surfaces
with different weights based on the actual length of resi-
dence of each individual, but there were difficulties in
incorporating this information into risk surfaces due to a
substantial degree of variability in the length of residence.
However, we observed spatial patterns consistent with
those in Figure 3, despite the greater variability, when we
visualized risk surfaces with length of residence
information.

There is also need for cautious interpretation of these
results due to the potential for selection bias inherent in
the study design, including factors such as non-participa-
tion, and missing and excluded residential location.
Although we had a relatively stable population and about
40% of study participants were lifetime residents in the
study area, there may be different geographic patterns
among those included and excluded groups. We excluded
missing residential information and residential locations
outside of the study area. In addition, we had a rate of
non-participation of about 30% in the survey. However,
in our earlier study [14], we found that characteristics of
subjects in the study area were not different from charac-
teristics of subjects with missing residential information
and from subjects excluded due to residence outside of the
study area, and that the geographic distribution of partic-
ipants was not different from that of non-participants.
Although we used the same methods for both cases and
controls, and interviewers were blinded as to case and
control status, there may be recall bias in the lifetime self-
reported residential history. We validated the accuracy
and reliability of lifetime residential history, especially
earlier residences. Our finding was that reported residence
information was generally correct. The greater problem
was missing data; for this we conducted searches of histor-
ical records, as we have described earlier. We are now in
the process of obtaining birth addresses from birth certif-
icates for additional validation.

This study has significant implications for further studies
on environmental exposure and breast cancer. We had
previously found strong evidence of clustering of resi-
dence in early life, especially residence at birth and
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menarche [14]. In these analyses, we were able to show
evidence of clustering of lifetime residence. In addition,
we found breast cancer cases were more mobile than con-
trols, and that premenopausal participants were more
mobile than postmenopausal pariticipants. Average years
at current residence was between 11 and 12 years for pre-
menopausal participating cases and controls, compared
to 22 and 23 years for postmenopausal participating cases
and controls, respectively. Taking findings from this and
our previous study together, it appears that examination
of exposure opportunities in the past and across the
lifespan may be critical for understanding environmental
exposures related to breast cancer. Exploring spatio-tem-

poral patterns of lifetime residential history may provide
a link between this potential exposure and breast cancer
risk. This study provides a more comprehensive analytical
framework for the analysis of environmental exposures in
relation to breast cancer by considering these compo-
nents, such as migration and latency periods, and these
spatio-temporal patterns of lifetime residential history
may be a key to the understanding the actual relationships
between environmental exposure and subsequent breast
cancer risk.

To provide more accurate measures of personal cumula-
tive exposures based on complete lifetime residential

Risk surfaces of pre- and postmenopausal breast cancer using standardized difference;Figure 3
Risk surfaces of pre- and postmenopausal breast cancer using standardized difference; Areas with standardized 
difference greater than 2 SD are portrayed as contours of 2, and areas exceeding critical value of 3.56 as red images. The rec-
tangular region was used as an approximate boundary of the study area instead of actual county boundary in Figure 1. East (x) 
and north (y) coordinates in projected UTM miles.
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history, further studies should take into account the differ-
ent effects of time periods or timing of exposures; con-
struction of lifetime cumulative risk surfaces with
different weights for exposure sensitivity at different
points in time is a potential improvement and explana-
tion of the methods employed to date. This approach may
help to provide an answer to the question of where, when,
and what kinds of exposures have influenced individuals'
risk for a particular disease. Further, there has been recent
development of a GIS-based framework to examine spa-
tio-temporal patterns of lifetime residential history; the
geospatial lifeline concept and space-time information
system (STIS) approach is a good example of this [25-27].
We are currently testing the feasibility of similarity and
difference measures of an individual's lifetime residential
history using this case and control data, since it would be
a powerful tool to analyze the personal environmental
exposures associated with lifetime residential history.

In summary, we found evidence of clustering of lifetime
residence for premenopausal cases relative to controls,
and a substantial degree of spatio-temporal variability in
the risk surfaces, thus providing a working hypothesis on
breast cancer and environmental exposures. Geographic
areas with higher case densities need further
epidemiologic investigation for potential relationships
between lifetime environmental exposures and breast
cancer risk. Examination of lifetime residential history
provided additional information on geographic areas
associated with higher risk; limiting exploration of
chronic disease clustering to current residence may neglect
important relationships between location and disease.
Further studies on the relationship between disease risk
and environmental exposures associated with lifetime res-
idential history should be replicated in other settings.

Methods
The Western New York Exposure and Breast Cancer Study 
(WEB Study)
Data from a population-based case-control study of breast
cancer in western New York (the WEB Study) were used
for our analyses. Participants were women, age 35–79
who were residents of Erie and Niagara counties, with no
history of cancer other than non-melanoma skin cancer;
cases were women with incident, primary, pathologically
confirmed breast cancer, diagnosed during the period
1996–2001, and controls were randomly selected and fre-
quency matched to cases on age, race, and county of cur-
rent residence. Details of the WEB study, including
selection, ascertainment, in-depth interview processes,
have been described previously [14]. We collected lifetime
residential histories for 1,166 cases and 2,105 controls,
identified 20,240 lifetime addresses, an average of approx-
imately 6 addresses for each individual, from participating

cases and controls. Analyses were restricted to those resi-
dential locations within the two counties of study area.

Geocoding of residential location
Geocoding of residential locations enables us to record
each individual's locational information as x and y coor-
dinates to be used in further spatial analyses. Address
geocoding is a process that creates a theme based on the
address data in a tabular form (event theme) and a refer-
ence feature theme (street map) to add point locations
defined by the street address to the map. Matching
depends not only on the quality of the reference theme,
but also on the quality of the tabular data to be mapped.
We used GDT/Dynamap 2000, an enhanced version of
Topographically Integrated Geographic Encoding and
Referencing system (TIGER), as a reference theme. In a
study validating the positional accuracy of TIGER for the
use in epidemiologic study [28], we found positional
accuracy to be extremely high.

The overall matching rate for the 15,487 Erie and Niagara
County residential locations was 82% (12,698); 91% of
the matches were matched with complete information
(good match), while about 9% of were estimated with
partial information (interactive match) as detailed below.
Geocoding success rates were lower for earlier residences,
mainly due to more missing and partial information of
earlier residences and changes in streets names and zip
codes. However, it is important to note that there were few
changes in street structure for this region during the time
period of interest. There was, of course, addition of new
streets, but existing streets were unchanged for the most
part, and thus we found that the process of geocoding
using current information was not inappropriate. We
utilized various resources, including historic city directo-
ries with address information for residents, historical
maps, and commercial address databases, to find missing
residence information, and we developed several strate-
gies to improve matching rates [14]. In addition, for resi-
dences where we had a known street name but no known
street number and if the total length of the street was one
kilometre or less, we estimated the residence location as
the midpoint of the street.

Kernel density estimation methods
Kernel density estimation methods have been used for
disease mapping and for the detection of geographical
location of clusters in epidemiologic settings [10,12,29].
A general form of the kernel k is defined as,

, and by averaging over these individual

kernel functions, we obtain the kernel density estimator,
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where x is the location for density estimation, xi is the
observed point location, n is the number of points, and h
is a smoothing parameter that regulates the degree of
smoothness. Kernel functions are symmetric around zero
and integrate to one. Both kernel and kernel density esti-
mator are density functions; thus ∫kx (x)dx = 1 and ∫fh(x)dx
= 1. For the two-dimensional kernel density estimator:

While the estimation of intensity for one point pattern
may show patterns of high and low risk areas, this is of
limited utility in epidemiologic applications because it
may largely reflect the pattern of population distribution
[30]. The ratio of case to control density can be more effec-
tively used in epidemiologic settings [9,31]. To estimate
the ratio of the two density estimates, the ratio of case to

control density,  is used, where  and  are

estimates of the intensity for cases and controls,
respectively. Smoothed risk surfaces using the ratio or log
ratio of case to control density can be less effective with
small sample sizes; it is possible to have spurious, high
risk areas in the application of the ratio of densities when
the value of the control density is too small.

The relative difference between two densities provides an
alternative way to assess the spatial variability of risk sur-
faces. Using the square root variance stabilizing transfor-
mation and the standardized difference, this measure
allows us to identify areas with differences between case
and control density exceeding two standard deviations
[32]. The standardized difference between case and con-
trol densities is obtained by taking the square root of the
case density minus the square root of the control density,
and dividing by the standard deviation of the difference
between the densities.

where 

Analytical procedures
The first step in creating smoothed risk surfaces using ker-
nel methods was to create reference grids and overlay the

study area with them. We obtained the smoothed inten-
sity for both cases and controls by calculating the distance
between each point on the reference grid and the loca-
tions of breast cancer cases and controls. We used the
quartic kernel to estimate the intensity of points at each
grid point, although the choice of kernel type is not crucial
as long as the kernel is symmetrical [33]. We applied
equal, fixed bandwidths for both cases and controls using
equation (1) because the objective is to describe overall
patterns of the underlying spatial distribution [9]. The risk
surface was obtained by forming the difference in densi-
ties based on equation (2).

The above analyses were repeated with varying band-
widths because the choice of appropriate bandwidth is
one of the primary concerns of the kernel method.
Although a subjective choice made from a range of values
is commonly used [33], selections of bandwidth were
made here on the basis of several factors. To avoid subjec-
tivity, we first began with the commonly used optimal
bandwidth designed to minimize the estimated mean
square error [34]. Other established methods, such as
cross validation, were tried and these resulted in small
bandwidths because of the large sample size [34,35]. In
addition, to take into account the spatial distribution of
point patterns and to avoid problems associated with
fixed bandwidths, we initially selected bandwidths based
on the average distance among points. Since the size of
the study area is approximately 30 miles in width and 60
miles in length, we selected a one-mile radius as an initial
bandwidth of the kernel, with a range of 0.5 to 10 miles.
In summary, we searched over a range of bandwidths and
ultimately chose a two-mile bandwidth as a balance
between over-smoothing and under-smoothing. Increas-
ing bandwidth implies increasing the amount of smooth-
ing in the estimate. A larger bandwidth results in very
smooth density surfaces, while too small a bandwidth
produces noisy density estimates. These issues are impor-
tant in applications of our case-control data; the geo-
graphic distribution of cases and controls is dependent on
the population distribution, which is greatly concentrated
in urban areas and is sparser in rural areas. Thus, the use
of a small bandwidth less than two miles resulted in an
unrecognizable pattern of density.

Risk surfaces based on the ratio and difference in density
surfaces between cases and controls were implemented in
a GIS and S-Plus environment [36]. In addition to finding
the risk surface associated with the standardized differ-
ence between densities, we tested the significance of the
difference surfaces between cases and controls by Monte
Carlo simulation. Under the null hypothesis of constant
risk in the study area, we obtained critical values. We first
randomly assigned case and control status to each of the
case and control locations, based on the proportion of
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cases and controls among the set of cases and controls.
Then we obtained the 95th percentile for the maximum
difference between case and control densities from 999
simulations.
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Abstract 

While there are quite consistent data regarding associations of body weight and 

postmenopausal breast cancer, there are now accumulating data that would indicate that 

weight gain in adult life is more predictive of risk than absolute body weight. There is, 

however, little known about the relative impact of timing of weight gain in adult life as 

well as other characteristics of the weight and breast cancer association that might 

provide insight into the mechanism of the observation. We conducted a population-based 

case control study of breast cancer (1996-2001), the Western New York Exposures and 

Breast Cancer Study (WEB Study). Included were 1,166 women with primary, 

histologically confirmed, incident breast cancer and 2,105 controls frequency-matched on 

age, race, and county of residence. Unconditional logistic regression was used to estimate 

odds ratios (OR) and 95% confidence intervals (CI). We found increased risk of breast 

cancer associated with lifetime adult weight gain among post- but not premenopausal 

women. Further, adult weight gain was associated with risk in postmenopausal women 

only among those in strata defined by waist circumference above median, by positive 

estrogen or progesterone status, or by never use of hormone replacement therapy. We 

also found an association with risk for weight gain since first pregnancy and for weight 

gain between the time of the first pregnancy and menopause, independent of body mass 

index and lifetime adult weight gain. Our results suggest that there are time periods of 

weight gain that have greater impact on risk, and that central body fat, receptor status and 

hormone replacement therapy may all affect the observed association.  

 



Numerous epidemiologic studies of the relationship between body size and breast 

cancer risk have been conducted to examine its potential role as a modifiable risk factor, 

independent of dietary intake and physical activity.1-4 Although our ability to explain the 

mechanism of the observed association is still limited, there is quite consistent evidence 

showing an association of indicators of body size and postmenopausal breast cancer. In 

particular, body mass index (BMI) and central adiposity have been shown to be 

associated with increased risk of post- but not premenopausal breast cancer.5-9  

There are now accumulating data that would indicate that weight gain in adult life 

is more predictive of risk than absolute body weight or BMI.10-15 There is, however, little 

known about the timing of weight gain in adult life as well as other characteristics of the 

weight and breast cancer association that might provide insight into the mechanism of the 

observation. There is interest in weight gain during particular periods of life, especially 

weight gain during periods of hormonal changes, such as pregnancy and menopause.4,16-17 

Understanding of timing of weight gain in relation to risk could provide insight into the 

mechanism of the observed associations. In addition, there is evidence that central 

adiposity is associated with breast cancer risk7-9,18-19; interactions between weight gain 

and central adiposity are of interest, because of difference in metabolic activity 

depending on the location of fat disposition.  

We examined here associations of lifetime adult weight gain with pre- and 

postmenopausal breast cancer, examining in particular the role of the timing of weight 

gain on postmenopausal breast cancer risk. We examined weight change between each 

decade as well as weight change at specific time points in a woman’s life: around the 

time of women’s first pregnancy and at menopause, as important time periods of 



hormonal change. Interrelationships between central adiposity and weight gain were also 

assessed to explain effects of adult weight gain on subsequent risk of postmenopausal 

breast cancer. Further, we evaluted whether effects of weight gain on postmenopausal 

breast cancer differed by estrogen and progesterone receptor status of tumors and by a 

women’s use of hormone replacement therapy.  

 

Methods 

Study population 

We conducted a population-based case control study of breast cancer (1996-

2001), the Western New York Exposures and Breast Cancer Study (WEB Study). 

Eligible for the study as cases were all women diagnosed with primary, histologically-

confirmed, incident breast cancer, age 35-79 and resident of the two counties of the study 

area. All cases were interviewed within one year of diagnosis; most were interviewed 

within three to six months following diagnosis. Controls were randomly selected from the 

New York State Department of Motor Vehicles driver’s license list (≤ aged 65) and the 

Health Care Finance Administration rolls (> 65 years), frequency-matched to cases on 

age, race, and county of residence. A total of 1,638 cases and 3,396 controls met our 

inclusion criteria of age 35-79, current residence in Erie or Niagara County in New York 

State, no previous cancer diagnosis other than non-melanoma skin cancer. Response rates 

were 71% (1,166/1,638) and 62% (2,105/3,396) for cases and controls, respectively, 

among cases and controls for whom we could determine eligibility. All participants 

provided informed consent, and the protocol was approved by the Institutional Review 

Boards of the University at Buffalo and of all the participating hospitals.  



 

Data collection 

Extensive in-person interviews and self-administered questionnaires were used to 

ascertain information on potential confounding factors and anthropometric measures, 

including lifetime weight. Participants were asked to recall their body weight for each 

decade of their lives from age 20 to one year before diagnosis for cases and one year 

before interview for controls. They were also asked to recall the amount of their weight 

gain during their first pregnancy, and to identify their body shape at the time of menarche 

from among nine pictograms. Current height, weight, and several measures of central 

adiposity (abdominal height, waist circumference, hip circumference) were measured by 

trained interviewers according to a standardized protocol. Waist circumference was 

measured by placing the tape around the smallest point between the top of iliac crest and 

the bottom of rib cage; hip circumference was measured by placing the tape around the 

hips at the biggest circumference point between the iliac crest and the crotch, and 

abdominal height was measured using a caliper on the participant in a recumbent 

position. All measures were to the nearest 0.1 cm. Three measurements were initially 

made for accuracy, and these were repeated until the three readings were all within 0.5 

cm of each other. For the analyses reported here, current weight was reported weight one 

year before interview, and BMI based on measured height during interview and reported 

weight one year before interview were used. Weight one year before interview and 

measured weight were highly correlated (r =0.91) 

Estrogen receptor (ER) and progesterone receptor (PR) status information was 

abstracted from pathology reports. Receptor status was determined by either biochemical 



or immunoperoxidase assay; ER positive tumors were those with at least an ER 

concentration values greater than 5 fmol/mg or with greater than 5% of the cells with 

estrogen receptors. We obtained ER and PR status for 646 cases of the 841 eligible 

postmenopausal breast cancer cases; for the remaining 23% (195) status was unknown 

either because women did not give us permission to examine their medical records (17) 

or because the receptor status of the tumor was not measured.  

 

Data analysis 

Lifetime adult weight change was calculated as the difference between reported 

weight at age 20 and weight one year before interview. Weight change was examined for 

a number of intervals that are potentially important: from the time of a first pregnancy 

and from the time of menopause to one year before interview, between the time of first 

pregnancy and menopause, and during each decade of life from age 20.  

All analyses were conducted stratified on menopausal status at diagnosis. Women 

were considered postmenopausal if their menses had ceased permanently and naturally. 

Among other women, participants were also considered postmenopausal if any of the 

following conditions were true: they had had a bilateral oophorectomy, they had had a 

hysterectomy without removal of the ovaries and they were older than 50, their menses 

had ceased permanently due to radiation or other medical treatment and they were older 

than 55. 

 Unconditional logistic regression was used to estimate odds ratios (OR) and 95% 

confidence intervals (CI). The cut points for the categorical analyses were derived from 

the distribution of controls; quartiles of weight gain were determined as well as another 



category of women who had not gained or who had lost weight during the time period of 

study. All models were adjusted for age at interview, education, age at first birth, age at 

menarche, previous benign breast disease, family history of breast cancer in a first degree 

relative, and age at menopause and use of hormone replacement therapy (for 

postmenopausal women only). P for trend was determined by the p-value for the 

coefficient of the continuous exposure variable, while adjusting for covariates and 

excluding the group of women who had lost weight. Since weight change and BMI were 

highly correlated, we adjusted for BMI by including residuals of the regression of weight 

gain on BMI.20   

 

Results 

While details of the study population have been published previously,21,22  

descriptive characteristics of cases and controls by menopausal status, including several 

anthropometric measures, were presented in Table 1. Among premenopausal participants, 

these anthropometric measures were not statistically different between cases and controls, 

with the exception of BMI at age 20 (p=0.03) and body type at menarche (p=0.04). Also 

weight gain since age 20 was not statistically different between premenopausal cases and 

controls. Further we examined premenopausal breast cancer risk associated with BMI and 

weight change between age 20 and one year ago. As has been found by others, among the 

pre-menopausal women, BMI and lifetime weight gain were not associated with risk; 

adjusted OR was 0.75 (95% CI 0.49-1.16, p for trend=0.18) for women in the highest 

quartile of BMI (>30.9 kg/m2) compared to the lowest (<22.2 kg/m2), while adjusted OR 

was 0.84 (95% CI 0.51-1.38, p for trend=0.12) for women in the highest (> 25 kg) 



compared to women who gained between 0 and 6.8 kg. Because the association of risk 

with weight gain was not seen among premenopausal women, further analyses were 

restricted to postmenopausal participants only.  

Selected anthropometric measures of postmenopausal participants are also shown 

in Table 1; in general, anthropometric measures in early life, including weight at age 20, 

body type at menarche, weight gained during first full term pregnancy were not different 

between cases and controls, while measures in later adult life, height, weight one year 

ago, measured weight, abdominal height, and waist circumference were statistically 

different (p values of 0.001, 0.003, 0.009, 0.01, 0.001 respectively). Also, correlations 

between weight, BMI, and weight change between time periods were examined; for 

subsequent analyses, we adjusted for BMI residuals to identify independent effects of 

weight change on breast cancer risk; BMI one year ago was correlated with weight 

change between age 20 and one year ago (r=0.85 and 0.86 for cases and controls, 

respectively).  

Similarly, we found positive associations of postmenopausal breast cancer risk 

with most anthropometric measurements made at the time of interview when we 

examined association of various anthropometric measures in different time periods. 

Recent indicators of body size, including body weight one year before interview, height, 

BMI one year before interview were all associated with increased risk of postmenopausal 

breast cancer; women with relatively higher body weight, height, and BMI had an 

increased risk of 1.61 (95% CI 1.19-2.20, p=0.02), 1.58 (95% CI 1.20-2.09, p=0.001), 

1.57 (95%CI 1.18-2.10, p=0.02), respectively when comparing highest to lowest quartile. 

We examined waist circumference as a measure of central adiposity; it was associated 



with postmenopausal breast cancer (adjusted OR 1.76, 95% CI 1.33-2.32). We also 

examined abdominal height in relation to risk; this measure of central adiposity was 

highly correlated with waist circumference (r = 0.85); the association with risk was 

similar to that for waist circumference (data not shown). Absolute body weight at first 

pregnancy and menopause were also associated with increased risk of postmenopausal 

breast cancer; women in the highest quartile of weight had a risk of 1.61 (95% CI 1.08-

2.40) and 1.98 (95% CI 1.36-2.88), respectively compared with the women in the lowest. 

Neither BMI at first pregnancy nor BMI at menopause was associated with increased risk 

of postmenopausal breast cancer. In addition, neither weight nor BMI at age 20 was 

associated with increased risk. 

 Risk associated with weight change between age 20 and one year ago for 

postmenopausal breast cancer are shown in Table 2. An increased risk of breast cancer 

was found for postmenopausal women who gained more than 27.3 kg compared with 

women who gained between 0 and 9.1 kg (adjusted OR 1.71, 95% CI 1.23-2.37; p for 

trend = 0.05), even after controlling for BMI. Each 5 kg increase in the weight between 

age 20 and one year ago was associated with a 4% change in risk; OR 1.04 (95%CI 1.03-

1.05) per 5kg of weight gain in continuous form between two time points. Weight 

changes between decades and between several time periods with biological relevance to 

breast cancer were also examined. We found a positive association of weight change 

between several decades with postmenopausal breast cancer. There was a significant 

increase in risk of postmenopausal breast cancer associated with weight gain in the age 

periods 30-39 (OR 1.72, 95% CI 1.14-2.59), 40-49 (OR 1.92, 95% CI 1.17-3.15), and 60-

69 (OR 1.94, 95% CI 1.21-3.10), but not in other decades of life; however, confidence 



intervals for all decades overlapped. With adjustment for total lifetime weight change, 

odds ratios were attenuated and all confidence intervals for weight gain during decades of 

life included the null. 

 We also examined weight change around the time of women’s first pregnancy and 

the time of menopause, and found significantly increased breast cancer risk for weight 

change for weight gain between menopause and the present and for weight gain between 

first pregnancy and menopause. When weight change between first pregnancy and 

menopause was examined, we found positive associations; adult weight gain between 

these two hormonal time periods was most strongly associated with the increased risk of 

postmenopausal breast cancer (OR 1.91, 95% CI 1.26-2.88, comparing highest to lowest 

quartile). We found similar associations of risk of postmenopausal breast cancer for 

weight change from first pregnancy to one year ago (OR 1.70, 95% CI 1.22-2.37), and 

from menopause to one year ago (OR 1.58, 95% CI 1.09-2.30). Again, confidence 

intervals for these time periods overlapped and these results overlapped with those for the 

decade analysis. We further adjusted these ORs for weight gain between age 20 and one 

year ago; ORs were diminished except for the one for weight change since first 

pregnancy which remained of similar magnitude. On the other hand, weight change 

between age 20 and first pregnancy was not associated with the risk. We did not observe 

an association of reported weight gained during the first pregnancy with breast cancer 

risk (data not shown). Additionally, breast cancer risk associated with weight change 

between age 20 and one year ago were analyzed by the time since menopause. We found 

that adult weight gain was more strongly associated with the increased risk of breast 

cancer among postmenopausal women with a longer time since menopause; there was a 



significant increase in risk associated with weight gain for those women in stratum more 

than 20 years, and 11-20 years since menopause (OR 2.35, 95% CI 1.24-4.46, p-

trend=.05 and OR 2.00, 95% CI 1.10-3.64, p-trend=.01 respectively), but not in less than 

10 years (OR 1.25, 95% CI 0.74-2.12, p for trend=0.59). 

 We also examined the relationships between weight change and central adiposity 

with breast cancer risk. ORs for risk associated with weight change between age 20 and 

one year ago, stratified by the categories defined by the median of waist circumference 

were calculated (Table 3). Adult weight gain and central body fat were correlated 

(r=0.68); there was more weight gain for both cases and controls among those with more 

central body fat. Adult weight gain was associated with increased risk of breast cancer 

only among women with waist circumference above the median. Although a test for 

interaction was not statistically significant (p=0.42), there was a nonmonotonic increase 

in the group of women with waist circumference above the median, but there was no 

association with waist circumference below the median. 

 Finally, we evaluated whether the association of weight gain with risk was different 

by estrogen and progesterone receptor status. Adult weight gain was strongly associated 

with increased risk of postmenopausal breast cancer among ER or PR positive tumors, 

and statistically significant trends were observed (p=0.001, see Table 4). Weight change 

was not associated with breast cancer risk among ER or PR negative tumors. We also 

observed that the risk of postmenopausal breast cancer in relation to adult weight gain 

was more strongly associated with risk among never- than among ever-users of hormone 

replacement therapy.   

 



Discussion 

 We investigated the association of lifetime adult weight gain and pre- and 

postmenopausal breast cancer, in particular weight changes at different time points in a 

woman’s life. As has been reported previously,15,23-24 we observed increased risk of 

breast cancer associated with BMI and lifetime adult weight gain among post- but not 

premenopausal women. We also found that lifetime adult weight gain was associated 

with postmenopausal breast cancer risk only among those in strata defined by higher 

waist circumference (above median), by positive estrogen or progesterone status, or by 

never use of HRT. While current weight, height, and waist circumference were  

associated with risk, we did not find any association with risk for measures of body size 

at the time of menarche, weight at age 20, or weight gain during the first pregnancy. In 

relation to timing of weight gain, we did find an association of weight gain since first 

pregnancy, and weight gain between the time of the first pregnancy and menopause, 

independent of BMI one year ago and lifetime adult weight gain. Weight gain since 

menopause was also associated with risk. Adult weight gain was more associated with 

risk for women whose menopause was longer ago than for those who had experienced it 

more recently.  

  Timing of weight gain has not generally been addressed adequately in previous 

studies of weight change and breast cancer, and such timing may provide a clue on 

etiologic role of adult weigh gain in relation to breast cancer risk. We found positive 

associations with risk for weight gain during the 30’s and 40’s, and between the time 

periods of hormonal changes. However, the mechanism for these findings is not known. 

It could be that weight gain is an indicator of hormonal environment and that the factors 



which lead to increased body weight also increase risk. It may also be that energy balance 

at these time points is particularly significant. Lastly, it may also be that there is more 

variability in weight change in these time periods and that affects our ability to detect 

differences in risk. We also found positive associations of adult weight gain with risk for 

those with positive estrogen or progesterone status and for never users of HRT, consistent 

with the findings of others.13,23-27 These findings also lend credence to the notion that the 

association of weight gain with risk of postmenopausal breast cancer is related to steroid 

hormone metabolism. 

  When we examined the relationships between weight gain and central adiposity 

on breast cancer risk, we found evidence of increased risk of postmenopausal breast 

cancer with higher adult weight gain among those with greater waist circumference. 

Despite a non-significant p for interaction, the point estimates are all elevated suggesting 

that there may be a nonlinear relationship and effect modification between them. No 

other studies have examined interactions between weight gain and central adiposity. It 

has been suggested that central adipose tissue is more metabolically active than 

peripheral adipose.18 Our findings would suggest that only among women with greater 

central adipose is weight gain associated with risk. In addition, there has been speculation 

that timing of weight gain may have different effects on the location of fat 

disposition.28,29 Further, greater central adiposity may reflect differences in steroid 

hormones including testosterone.30,31 As seen in other studies of weight gain and breast 

cancer risk, findings from previous studies have generally shown increased risk of 

postmenopausal breast cancer in relation to various measures of central adiposity in 

most7-9,19, but not in all studies.26,27 Waist-hip ratio was the commonly used measure of 



central adiposity, but some recent studies have used waist circumference which has been 

shown to be a stronger predictor of breast caner risk than waist-hip ratio.9,18 These 

interactions between central adiposity and weight gain during the period of hormonal 

changes may indicate the importance of metabolic changes in relation to breast cancer 

risk.  There is evidence linking central adiposity to altered glucose metabolism. It could 

also be that changes in glucose metabolism associated with increased central body fat 

explained the observed associations.  

  To further evaluate timing of weight gain on the risk, we examined effects of 

early life body-size indicators on breast cancer risk. Recent studies have shown some 

evidence that obesity in childhood is protective,14,32 and higher growth rates during 

adolescence may be an independent risk factor of breast cancer in adulthood.33,34 When 

we asked about a crude measure of body shape at the time of menarche, we did not find 

any association of this measure with risk. As have others, we found a protective effect of 

higher BMI at age 20; women in the highest quartile had a risk of 0.73 (95% CI 0.55-

0.97), supporting hypothesis that a heavy build in early adulthood reduces the risk of 

breast cancer in adulthood. In addition, height, as a marker of exposure to nutritional 

factors in early life, was associated with increased postmenopausal breast cancer risk as 

we presented previously.   

  In our study, there were a small number of women who reported losing weight 

during their adult lives or during one of the time periods. For most measures, there were 

non-significant increases in risk in this group. We also looked at risk associated with 

weight gain when this group was included in the referent. Findings were similar to those 

presented with no weight gain as the referent. Further, because of the possibility of 



weight loss in late stage breast cancer patients around the time of diagnosis, we examined 

results restricted to early stage breast cancer; findings were not different from those for 

all breast cancer cases shown here (data not shown). Additionally, because all models in 

our study were adjusted for the frequency matching factor of age but not for the other two 

factors, we confirmed that excluding those variables did not affect the point estimates.   

  Strengths of this population-based case-control study include the assessment of 

adult weight change at numerous time periods. We were able to assess various indicators 

of weight change and central adiposity, especially during periods of hormonal change in a 

woman’s life, and to assess effect modification of this association by stratifying analyses 

by hormone receptor status and the use of hormone replacement therapy. We were also 

able to make multiple comparisons between time periods. However, it is possible that the 

use of different cut points for the categorical analyses may limit our ability to infer from 

the data. 

  There are several limitations which need to be considered in interpretation of 

these results. These include those common to the case-control study design: recall and 

selection bias as well as misclassification in the self-reported measures. In order to assess 

selection bias, we obtained general information from non-participants in a brief phone 

interview, and found that non-participants were not different from those participants for 

several characteristics, including diet. However, we did not query non-participants 

regarding anthropometry. There may be recall bias in the lifetime self-reported weight. 

We used the same methods for both cases and controls, and there was no particular 

emphasis on weight-related questions. Interviewers were blinded as to case and control 

status. In addition, reported weight one year before interview had a high correlation with 



measured weight at the time of interview, and was similar for cases and controls (0.92 

and 0.91 for cases and controls, respectively). For the lifetime weight change, we used 

reported weight for age 20 and for one year before interview. We were concerned that for 

cases the current measured weight might be affected by their disease or by treatment. In 

fact, there were few differences. For waist circumference we relied on the interviewer 

measurements.  

  This study supports epidemiologic evidence showing an increased risk of breast 

cancer associated with adult weight gain among postmenopausal women, and suggests 

that weight gain during the 30’s and 40’s, weight gain since a woman’s first pregnancy, 

and weight gain since menopause may all be of importance in relation to postmenopausal 

breast cancer risk. Our results corroborate the evidence from previous studies, 

demonstrating interactions of weight gain and central adiposity measures, and suggesting 

that weight gain during periods of hormonal change are associated with higher risk. 

Further, the findings of an association with risk limited to ER+ or PR+ tumors and of 

stronger risk associated with never users of hormone replacement therapy also appear to 

provide evidence that the mechanism of an association of body weight with risk includes 

a hormonal etiology. Timing of adult weight gain appears to be of importance in relation 

to risk; evaluation of weight gain during times of hormonal changes and in relation to 

central adiposity should be evaluated in other research settings. 
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Table 1.  Descriptive characteristics of study participants (Mean ± Standard 
Deviation): WEB Study, 1996-2001.  

Premenopausal women (n=935) Postmenopausal women (n=2336)  

Cases  

(n=325) 

Controls 

(n=610) 

p-value Cases 

(n=841) 

Controls 

(n=1495) 

p-value 

Age (years) 44.9±4.6 44.1±4.6 .01 63.0±8.5 63.4±8.9 .30 

Education (years) 14.0±2.3 14.2±2.2 .08 13.3±2.6 13.0±2.3 <.0001 

Age at menarche (years) 12.5±1.6 12.6±1.6 .76 12.6±1.6 12.8±1.7 .02 

Age at first pregnancy* (years) 25.0±5.1 25.8±4.8 .03 23.8±4.7 23.5±4.3 .16 

Age at menopause (years) - - - 48.3±5.4 47.4±6.3 .001 

Time since first pregnancy* 

(years)  

19.9±7.2 18.4±6.8 .01 39.5±9.2 40.1±9.3 .19 

Time between first pregnancy 

and menopause* (years)   

- - - 24.4±6.8 24.1±7.0 .31 

Height (cm) 164.0±6.4 163.8±6.3 .63 161.8±6.6 160.8±6.1 <.0001 

BMI one year ago (kg/m2) 26.7±6.6 27.2±6.8 .28 28.9±6.1 28.4±6.4 .07 

Weight at interview (kg) 73.1±19.2 73.9±19.0 .52 75.7±16.1 73.8±16.3 .01 

Weight one year ago (kg) 71.7±18.4 72.9±19.2 .35 75.6±16.4 73.4±17.0 .003 

Abdominal height (cm) 19.6±3.3 19.6±3.6 .94 21.3±3.2 20.9±3.3 .01 

Waist circumference (cm) 84.4±15.0 84.2±15.2 .86 91.3±14.2 88.7±14.0 <.0001 

BMI at age 20  (kg/m2)  20.9±3.4 21.5±4.0 .03 21.0±3.0 21.4±3.2 .01 

Weight at age 20 (kg) 56.3±10.2 57.6±11.2 .09 55.0±8.5 55.2±8.6 .59 

Weight gained during first 
pregnancy* 

15.9±8.6 14.9±7.8 .16 15.5±10.8 15.1±10.3 .35 

Weight gain since age 20 (kg) 15.4±14.9 15.4±15.8 .35 20.6±14.6 18.2±15.4 <.0001 

Body type at menarche1 2.2±1.2 2.4±1.4 .04 2.1±1.2 2.1±1.2 .55 

Relative with breast cancer 
(yes) 

21% 10% <.0001 20% 14% <.0001 

Use of hormone replacement 
therapy* (yes) 

- - - 54% 50.0% .09 

* Sample sizes vary for this group because of exclusion of missing data and those women with no 
pregnancy.  
1 One being thinest and nine being fattest 
 
 
 
 
 
 
 
 



Table 2. Postmenopausal breast cancer risk associated with weight change during 
several key time periods with and without adjustment for BMI one year ago and for 
adult lifetime weight gain, WEB Study, 1996-2001.  
Weight change: age 20 to one 
year ago (kg) 

Cases 
(n=841) 

Controls 
(n=1495) 

Adjusted OR1 

(95%CI) 
Adjusted OR2  
(95%CI) 

≤ 0 47 131 0.84(.53-1.33) 0.90(.56-1.45) 
0-9.1 137 330 1.00 1.00 
9.1-17.7 208 343 1.49(1.10-2.01) 1.45(1.06-1.96) 
17.7-27.3 227 360 1.61(1.19-2.17) 1.53(1.12-2.08) 
>27.3 222 331 1.86(1.37-2.52) 1.71(1.23-2.37) 
p-Trend   .001 .05 
Weight change: age 20 to 29 
(kg) 

Cases 
(n=841) 

Controls 
(n=1495) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 232 414 1.12(.82-1.53) 1.25(.92-1.71) 
0-2.3 177 330 1.00 1.00 
2.3-4.5 168 323 1.12(.82-1.53) 1.06(.78-1.45) 
4.5-6.8 98 165 1.21(.83-1.77) 1.10(.75-1.61) 
>6.8 166 263 1.40(.94-2.09) 1.08(.71-1.67) 
p-Trend   .02 .07 
Weight change: age 30 to 39 
(kg) 

Cases 
(n=841) 

Controls 
(n=1495) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 225 456 0.89(.66-1.19) 0.95(.71-1.27) 
0-2.3 179 346 1.00 1.00 
2.3-4.5 181 313 1.19(.87-1.61) 1.11(.82-1.52) 
4.5-6.8 113 151 1.52(1.06-2.18) 1.35(.93-1.96) 
>6.8 143 229 1.72(1.14-2.59) 1.32(.83-2.09) 
p-Trend   .05 .04 
Weight change: age 40 to49 
(kg) 

Cases 
(n=840) 

Controls 
(n=1494) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 214 468 0.86(.56-1.31) 0.87(.57-1.32) 
0-2.3 60 112 1.00 1.00 
2.3-4.5 155 327 0.99(.65-1.53) 0.96(.63-1.48) 
4.5-7.8 248 331 1.71(1.13-2.59) 1.58(1.02-2.43) 
>7.8 163 256 1.92(1.17-3.15) 1.60(.91-2.79) 
p-Trend   .05 .07 
Weight change: age 50 to 59 
(kg) 

Cases 
(n=790) 

Controls 
(n=1357) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 218 441 0.99(.73-1.34) 1.05(.77-1.43) 
0-2.3 153 278 1.00 1.00 
2.3-4.5 182 253 1.52(1.11-2.09) 1.39(1.01-1.93) 
4.5-9.1 70 145 0.88(.58-1.33) 0.76(.50-1.17) 
>9.1 167 240 1.32(.87-1.99) 0.91(.56-1.48) 
p-Trend   .05 .26 
Weight change: age 60 to 69 
(kg) 

Cases 
(n=497) 

Controls 
(n=925) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 170 331 0.99(.96-1.02) 1.09(.75-1.58) 
0-2.3 92 214 1.00 1.00 



2.3-4.5 82 131 1.33(.88-2.03) 1.19(.78-1.83) 
4.5-8.3 44 101 1.06(.64-1.76) 0.90(.53-1.52) 
>8.3 109 148 1.94(1.21-3.10) 1.27(.72-2.27) 
p-Trend   .02 .06 
Weight change: age first 
pregnancy  to one year ago (kg) 

Cases 
(n=693) 

Controls 
(n=1340) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 43 150 0.75(.49-1.16) 0.74(.48-1.16) 
0-7.7 112 289 1.00 1.00 
7.7-14.1 175 303 1.48(1.10-2.01) 1.50(1.09-2.05) 
14.1-22.7 174 303 1.53(1.12-2.09) 1.57(1.09-2.25) 
>22.7 189 295 1.70(1.22-2.37) 1.78(1.08-2.94) 
p-Trend   .06 .36 
Weight change: age menopause 
to one year ago (kg) 

Cases 
(n=841) 

Controls 
(n=1495) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 203 436 0.87(.64-1.19) 0.91(.66-1.25) 
0-3.6 141 254 1.00 1.00 
3.6-7.3 163 272 1.03(.74-1.43) 0.99(.71-1.38) 
7.3-13.6 133 243 1.22(.86-1.73) 1.11(.76-1.61) 
>13.6 201 290 1.58(1.09-2.30) 1.27(.78-2.05) 
p-Trend   .13 .36 
Weight change:  age first 
pregnancy to  menopause (kg) 

Cases 
(n=693) 

Controls 
(n=1340) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 96 229 1.15(.80-1.66) 1.22(.84-1.76) 
0-4.5 91 243 1.00 1.00 
4.5-8.2 166 309 1.58(1.14-2.20) 1.48(1.06-2.06) 
8.2-13.6 190 297 1.90(1.36-2.66) 1.63(1.13-2.33) 
>13.6 150 262 1.91(1.26-2.88) 1.34(.81-2.22) 
p-Trend   .07 .01 
Weight change: age 20 to age 
first pregnancy (kg) 

Cases 
(n=693) 

Controls 
(n=1340) 

Adjusted OR2  
(95%CI) 

Adjusted OR3  
(95%CI) 

≤ 0 244 492 0.99(.73-1.35) 1.03(.76-1.41) 
0-2.3 117 236 1.00 1.00 
2.3-4.5 117 258 0.98(.70-1.36) 0.94(.67-1.32) 
4.5-7.6 76 142 1.15(.78-1.72) 1.08(.72-1.61) 
>7.6 139 212 1.52(.98-2.36) 1.25(.79-1.98) 
p-Trend   .02 .07 
1 Adjusted for age, education, previous benign breast disease, age at menarche, age at first birth,  
family history of breast cancer, and age at menopause, use of hormone replacement therapy. 
2 Adjusted for age, education, previous benign breast disease, age at menarche, age at first birth,  
family history of breast cancer, and age at menopause, use of hormone replacement therapy, BMI residuals.  
3 Adjusted for age, education, previous benign breast disease, age at menarche, age at first birth,  
family history of breast cancer, and age at menopause, use of hormone replacement therapy, BMI residuals,  
weight change between age 20 and one year before interview.  

 

 

 



Table 3. Postmenopausal breast cancer risk associated with weight change between 
age 20 and one year ago, stratified by waist circumference 

Below median (<88cm) Above median (≥88 cm) Weight change  
(kg) Cases 

(n=366) 
Controls 
(n=745) 

Adjusted OR* 
(95%CI) 

Cases 
(n=475) 

Controls 
(n=750) 

Adjusted OR* 
(95%CI) 

≤ 0 38 105 .86(.50-1.48) 9 26 1.61(.49-5.20) 
0-9.1 123 277 1.0 14 53 1.0 
9.1-17.7 126 215 1.22(.84-1.76) 82 128 2.48(1.16-5.28) 
17.7-27.3 67 131 1.10(.68-1.76) 160 229 2.39(1.15-4.95) 
>27.3 12 17 1.31(.52-3.27) 210 314 2.33(1.11-4.90) 
p-Trend   .44   .69 

* Adjusted for age, education, age at menarche, age at first birth, previous benign breast disease, family 
history of breast cancer, age at menopause, BMI residuals, HRT use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Postmenopausal breast cancer risk associated with weight change between 
age 20 and one year ago, stratified by estrogen and progesterone receptor status and 
by HRT use 

ER+ ER- Weight 
change  
(kg) 

Cases 
(n=510) 

Controls 
(n=1495) 

Adjusted OR1 
(95%CI) 

Cases 
(n=136) 

Controls 
(n=1495) 

Adjusted OR1 
(95%CI) 

≤ 0 30 131 1.03(.58-1.82) 10 131 1.31(.51-3.33) 
0-9.1 69 330 1.0 24 330 1.0 
9.1-17.7 124 343 1.60(1.09-2.35) 30 343 1.48(.78-2.80) 
17.7-27.3 138 360 1.86(1.27-2.73) 42 360 1.62(.86-3.05) 
>27.3 149 331 2.42(1.62-3.61) 30 331 1.19(.58-2.43) 
p-Trend   .001  .68  

PR+ PR- Weight 
change  
(kg) 

Cases 
(n=389) 

Controls 
(n=1495) 

Adjusted OR1 
(95%CI) 

Cases 
(n=257) 

Controls 
(n=1495) 

Adjusted OR1 
(95%CI) 

≤ 0 20 131 1.05(.52-2.12) 20 131 1.13(.58-2.18) 
0-9.1 45 330 1.0 48 330 1.0 
9.1-17.7 94 343 2.07(1.32-3.27) 60 343 1.14(.72-1.82) 
17.7-27.3 107 360 2.39(1.52-3.76) 73 360 1.33(.84-2.11) 
>27.3 123 331 3.14(1.96-5.04) 56 331 1.21(.73-2.01) 
p-Trend   .001  .82  

Never-users of HRT Ever-users of HRT Weight 
change  
(kg) 

Cases 
(n=385) 

Controls 
(n=716) 

Adjusted OR2 
(95%CI) 

Cases 
(n=447) 

Controls 
(n=717) 

Adjusted OR2 
(95%CI) 

≤ 0 20 64 0.75(.34-1.63) 27 62 1.03(.56-1.89) 
0-9.1 49 146 1.00 88 174 1.00 
9.1-17.7 96 160 1.69(1.04-2.75) 109 171 1.32(.88-1.97) 
17.7-27.3 97 164 1.86(1.15-3.03) 127 182 1.38(.91-2.08) 
>27.3 123 182 2.00(1.22-3.27) 96 128 1.52(.96-2.41) 
p-Trend   .12   .26 

1 Adjusted for age, education, age at menarche, age at first birth, previous benign breast disease, family 
history of breast cancer, age at menopause, BMI residuals, HRT use. 
2 Adjusted for age, education, age at menarche, age at first birth, previous benign breast disease, family 
history of breast cancer, age at menopause, BMI residuals. 
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